{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"分别以氮化硼(BN)、BRUGGOLENP250、CaCO3和Tm-3为成核剂,用熔融模压法制备了聚(3-羟基丁酸酯-co-4羟基丁酸酯)[P(3HB-co-4HB)]样品,借用偏光显微镜(POM)、差示扫描量热(DSC)、热重分析(TGA)和扫描电镜(SEM)等考察了成核剂种类及用量对P(3HB-co-4HB)结晶形态、熔点、热分解温度、力学性能及断面形态的影响。结果表明,各种成核剂均能有效细化P(3HB-co-4HB)的球晶尺寸,提高其熔点及热分解温度;当成核剂BN的质量分数为5‰~8‰时,P(3HB-co-4HB)的综合性能最好。","authors":[{"authorName":"朱富艳","id":"75c05366-3879-4935-98cb-2a4dd8077d2d","originalAuthorName":"朱富艳"},{"authorName":"卢秀萍","id":"4ed8db7b-9d60-438b-8a18-b4055a936ac8","originalAuthorName":"卢秀萍"},{"authorName":"温幸","id":"32a600bb-41ab-4e3f-92fd-e944ce69560a","originalAuthorName":"温幸"},{"authorName":"郑宁","id":"d67186c1-598b-494b-8e00-f22a6c99d6a8","originalAuthorName":"郑宁"}],"doi":"","fpage":"72","id":"530af394-c583-4e2a-905a-714c376d4f07","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2564325b-8603-4062-9e96-1c8ae6b90111","keyword":"聚(3-羟基丁酸酯-co-4-羟基丁酸酯)","originalKeyword":"聚(3-羟基丁酸酯-co-4-羟基丁酸酯)"},{"id":"6563d77a-8c28-4fe9-8a75-837b7392c136","keyword":"成核剂","originalKeyword":"成核剂"},{"id":"567079b5-c0c0-47ab-bab1-e9400e49bb57","keyword":"结晶形态","originalKeyword":"结晶形态"},{"id":"14155220-0592-457f-bb06-eee29f84294e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"21620ac6-f95e-428d-b15e-6c33f93f1778","keyword":"熔点","originalKeyword":"熔点"},{"id":"f0118fbe-e7d3-4d19-8517-17fb9090dd92","keyword":"热分解温度","originalKeyword":"热分解温度"},{"id":"526d928d-38b4-4cb6-ae66-a474887f0493","keyword":"断面形态","originalKeyword":"断面形态"}],"language":"zh","publisherId":"gfzclkxygc201109020","title":"成核剂对聚(3-羟基丁酸酯-co-4羟基丁酸酯)性能的影响","volume":"27","year":"2011"},{"abstractinfo":"采用热固化层压方法制备了环氧-钛酸钡-玻璃布(EBG)板材,并分析钛酸钡(BTO)添加量对埋容用EBG板材各项性能的影响。结果表明:随着BTO填料添加量的增大,EBG板材的实际密度先接近后偏离理论密度,孔隙率先减小后增大,耐浸焊时间、剥离强度先增大后减小,5%热分解温度和介电常数增大;当BTO的质量分数为80%左右时,埋容用EBG板材具有较好的综合性能;EBG板材为一种混联模型。","authors":[{"authorName":"杨中强","id":"55b16c4d-09b9-4350-994b-49b992a5af3c","originalAuthorName":"杨中强"},{"authorName":"殷卫峰","id":"0b2e1c46-129a-4602-9b4d-bb2dbb1caf95","originalAuthorName":"殷卫峰"},{"authorName":"苏民社","id":"afc8ccfa-f2ae-482d-851f-0f2be28cd606","originalAuthorName":"苏民社"},{"authorName":"颜善银","id":"f8fb4968-85a2-4478-9d3e-ebaa6ed29de0","originalAuthorName":"颜善银"},{"authorName":"朱泳名","id":"186aa092-3b49-4123-84fb-a15bcfdaedd8","originalAuthorName":"朱泳名"}],"doi":"","fpage":"15","id":"33b7ac7e-4dea-4af1-93ba-033e22e903ca","issue":"1","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"4359b8f5-956b-4789-b102-7ca042e1b024","keyword":"钛酸钡","originalKeyword":"钛酸钡"},{"id":"da463ec4-afcc-4643-983d-65e50ef397c5","keyword":"孔隙率","originalKeyword":"孔隙率"},{"id":"0266bcf0-aa9c-4849-9189-037708bf29ef","keyword":"介电常数","originalKeyword":"介电常数"},{"id":"f763f638-48f0-48cf-a7db-52bddaf0c96b","keyword":"耐浸焊","originalKeyword":"耐浸焊"},{"id":"c83a5ae7-070f-442b-ae83-58d43a80575a","keyword":"剥离强度","originalKeyword":"剥离强度"},{"id":"4d24b117-90a6-464d-b3e4-d060c439ff5b","keyword":"热分解温度","originalKeyword":"热分解温度"},{"id":"aed4b4f9-8cdc-4c06-a573-bfdfd5c063a1","keyword":"埋容","originalKeyword":"埋容"}],"language":"zh","publisherId":"jycltx201501004","title":"钛酸钡添加量对埋容用环氧-钛酸钡-玻璃布板材性能的影响","volume":"","year":"2015"},{"abstractinfo":"以聚乳酸(PLA)为基体,细菌纤维素(BC)为增强体,通过PLA-三氯甲烷溶液与BC-无水乙醇悬浮液的共混扩散制备互穿网络结构的PLA/BC生物复合材料.采用扫描电子显微镜、热失重分析仪、偏光显微镜和电子万能试验机等研究了复合材料的微观形态、分散性、力学性能、热分解温度及球晶形貌.结果表明,采用溶液共混扩散法可得到以BC为骨架、PLA缠绕其表面的互穿网络结构的生物复合材料;BC可作为异相成核剂,显著细化PLA的球晶尺寸,提高复合材料的力学性能和热分解温度.BC的质量比为1.0%时,PLA/BC复合材料的球晶尺寸最小,力学性能和热分解温度最高.其中复合材料的缺口冲击强度和热分解温度分别较纯PLA提高了37.84%和约5℃.","authors":[{"authorName":"李红月","id":"7a1491be-f1d1-47b4-8c43-ad86e64a2c0d","originalAuthorName":"李红月"},{"authorName":"卢秀萍","id":"af2f0fce-7331-4bca-909f-2aa10cf8f110","originalAuthorName":"卢秀萍"},{"authorName":"杨华","id":"ed379b8d-1351-457f-9d6c-cbcd4ca087ed","originalAuthorName":"杨华"},{"authorName":"胡静雯","id":"6b884750-c9aa-42ac-acfe-95b844cb53ac","originalAuthorName":"胡静雯"}],"doi":"","fpage":"169","id":"54116ede-ef7d-48ae-85ff-e2b5e867aecb","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"8e05c8ef-b23c-4d58-8461-8d67c2ca2674","keyword":"细菌纤维素","originalKeyword":"细菌纤维素"},{"id":"db4c9e84-414d-4eec-b745-100bfd10c5d0","keyword":"聚乳酸","originalKeyword":"聚乳酸"},{"id":"66b67b93-cbf6-420e-b3fa-0ca7861afe03","keyword":"互穿网络","originalKeyword":"互穿网络"},{"id":"82efac27-7361-41ad-9283-3586812ad7cd","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"969dd53b-5a96-423d-947b-41b341046eef","keyword":"热分解温度","originalKeyword":"热分解温度"},{"id":"8de0d044-20d2-4bc6-b482-5026adfbc6be","keyword":"球晶形貌","originalKeyword":"球晶形貌"}],"language":"zh","publisherId":"gfzclkxygc201601032","title":"互穿网络聚乳酸/细菌纤维素生物复合材料的制备与性能","volume":"32","year":"2016"},{"abstractinfo":"以四元芳香族胺类化合物及顺丁烯二酸酐为原料合成了一种可溶于丙酮,微溶于乙酸乙酯的四马来酰亚胺(TMI),280℃固化1h,其热分解温度达527℃,并且有良好的工艺性能和力学性能.","authors":[{"authorName":"张斌","id":"6b16a7ba-3c0b-4c3a-aaf1-69f9ed2493fe","originalAuthorName":"张斌"},{"authorName":"张志谦","id":"b14758dc-21ff-48ca-8226-f7bd4ad405b5","originalAuthorName":"张志谦"},{"authorName":"王超","id":"71f6ae97-770a-4fc5-aac4-0d9a8ddc601c","originalAuthorName":"王超"},{"authorName":"李奇力","id":"84c991aa-cca0-4e81-a686-c452d0ee1a6f","originalAuthorName":"李奇力"},{"authorName":"关长参","id":"276dd0f0-bc7f-44c1-99ca-25a635cc7075","originalAuthorName":"关长参"}],"doi":"10.3321/j.issn:1000-3851.1998.04.005","fpage":"24","id":"60f20d52-8a76-49c2-b15d-14f67830e790","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"ef795a9d-a64a-4d46-a4c1-dd56f398d6ef","keyword":"马来酰亚胺","originalKeyword":"马来酰亚胺"},{"id":"5ffd3a05-6212-43e3-8601-e1809ba26051","keyword":"溶解","originalKeyword":"溶解"},{"id":"8b68d403-a66f-4c51-8a18-1b2cdca1d111","keyword":"丙酮","originalKeyword":"丙酮"},{"id":"2aa4a69c-7d0a-4aaf-b3d9-a62a62e7abaa","keyword":"热分解温度","originalKeyword":"热分解温度"}],"language":"zh","publisherId":"fhclxb199804005","title":"一种可溶于丙酮的四马来酰亚胺","volume":"15","year":"1998"},{"abstractinfo":"为了制备改性酚醛树脂,固定配方中苯酚和甲醛的量分别为470和325 g,引入不同比例的磷酸-硼酸复合酸(磷酸和硼酸加入量分别为苯酚质量的0和0,3%和3%,3%和1%,1%和3%),以草酸为催化剂,在70℃反应1 h 后,升温至90℃反应2 h,制备了改性酚醛树脂,检测了90℃反应不同时间后的转化率,反应产物的流动性和热分解特性,以及加乌洛托品热压成型试样的硬度、抗弯强度和抗冲击强度。结果表明:1)在70℃反应1 h,再升温至90℃反应2 h,各试样的反应转化率均达90%左右。2)与未改性酚醛树脂相比,加入磷酸、硼酸制备的改性酚醛树脂的聚合度高,热分解温度高,耐热性好,硬度、抗弯强度、抗冲击强度大。3)当磷酸和硼酸加入量分别为苯酚质量的1%和3%时,合成的改性酚醛树脂的性能最好,其热分解温度、硬度、抗弯强度和抗冲击强度分别达到500℃、114 HRA、51.76 MPa 和0.15 J·cm -2,分别比未改性树脂的提高25.9%、3.4%、17.6%和114.3%。","authors":[{"authorName":"李燕琳","id":"cec3a1c7-6462-475a-ad7d-c7ff6c02098b","originalAuthorName":"李燕琳"},{"authorName":"尹育航","id":"d24d307d-5015-4761-90a3-d1f25112599c","originalAuthorName":"尹育航"},{"authorName":"薛群虎","id":"1f8bfe82-b48b-49ca-8f9d-460c95a62928","originalAuthorName":"薛群虎"},{"authorName":"杨玉鹤","id":"196d132e-a052-4b41-bf37-12dd619a2b77","originalAuthorName":"杨玉鹤"}],"doi":"10.3969/j.issn.1001-1935.2016.02.012","fpage":"130","id":"fd2505ba-d796-493a-aa61-4d79c9ff4e2f","issue":"2","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"3c8dc017-a9ac-48d9-9ea7-bca91968d43e","keyword":"磷酸","originalKeyword":"磷酸"},{"id":"ac422e5c-5f36-4397-a332-b8223972bc6f","keyword":"硼酸","originalKeyword":"硼酸"},{"id":"f5241e97-9cd9-4c31-bb5c-733e2fac625c","keyword":"热塑性酚醛树脂","originalKeyword":"热塑性酚醛树脂"},{"id":"fa952976-aef6-42dd-a23d-ecd797ff1fb3","keyword":"流动性","originalKeyword":"流动性"},{"id":"8f8969b0-da21-4682-a891-686c33e0c8c3","keyword":"热分解温度","originalKeyword":"热分解温度"}],"language":"zh","publisherId":"nhcl201602012","title":"磷酸-硼酸改性酚醛树脂的制备及性能研究","volume":"50","year":"2016"},{"abstractinfo":"按照正交试验法制备不同钼磷硼含量的改性热塑性酚醛树脂,以分子量为检测指标,选出最优方案,并利用红外光谱法、热重分析等方法对其结构进行研究.实验结果表明:以苯酚质量为基准,当钼酸铵、磷酸、硼酸的含量为1%、1%、5%时为较优配方,此时改性酚醛树脂的热分解温度为499℃,700℃的残炭率为52.3%,抗弯强度达到58.12 MPa,冲击强度达到0.27 J/cm2.","authors":[{"authorName":"李燕琳","id":"abe627e5-8e48-48eb-99ed-dbddda364f15","originalAuthorName":"李燕琳"},{"authorName":"尹育航","id":"90243e8e-f108-47e7-bc3e-6a2e13e5aea4","originalAuthorName":"尹育航"},{"authorName":"薛群虎","id":"c36edf75-8704-4421-9bc3-a8c694b412e5","originalAuthorName":"薛群虎"},{"authorName":"杨玉鹤","id":"6431f12c-568e-4786-9a44-3c319bd39c42","originalAuthorName":"杨玉鹤"}],"doi":"","fpage":"665","id":"fffa8e65-a5a2-47ba-8d83-0964428e195b","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"ba5a5ab7-6675-4b29-b4a7-019430f1eec6","keyword":"正交试验法","originalKeyword":"正交试验法"},{"id":"509ea281-5194-44c8-a0ab-77a72a14ab27","keyword":"改性热塑性酚醛树脂","originalKeyword":"改性热塑性酚醛树脂"},{"id":"b210d073-c35f-45c9-8a0d-97350a614d88","keyword":"分子量","originalKeyword":"分子量"},{"id":"3f3987cc-83f9-43bb-a9a3-b0ffef25f823","keyword":"热分解温度","originalKeyword":"热分解温度"},{"id":"165b108e-9ccf-4bc5-b324-4a131a02aa5c","keyword":"残炭率","originalKeyword":"残炭率"}],"language":"zh","publisherId":"gsytb201602060","title":"钼磷硼改性酚醛树脂性能的研究","volume":"35","year":"2016"},{"abstractinfo":"为改善酚醛泡沫的耐高温性能,实验将适量的 B2 O3引入酚醛泡沫,经模压成型、固化后,制备出硼改性酚醛泡沫复合材料;研究了硼改性酚醛泡沫复合材料的微观结构,以及不同的硼含量对酚醛泡沫的压缩性能、耐高温性能的影响。结果表明,硼改性酚醛泡沫的压缩断裂特征为假塑性断裂模式;引入适量的B2 O3,可改善树脂基体相的韧性,提高酚醛泡沫复合材料的压缩强度,当 B2 O3含量为质量分数4%时,酚醛泡沫的压缩强度最大,为10.14 MPa,比纯酚醛泡沫提高了5.18%。硼改性有利于酚醛泡沫的高温稳定性,酚醛泡沫的热分解温度和残碳率均随硼含量的增加而有所提高;当 B2 O3含量为质量分数7%时,酚醛泡沫的耐高温性能最优,其失重10%时的热分解温度为447℃,比纯酚醛泡沫提高了76.68%;其800℃下的残碳率为66.37%,较纯酚醛泡沫高出16.05%。","authors":[{"authorName":"王斌","id":"987a1851-875b-4371-93b8-c8bab9051e5a","originalAuthorName":"王斌"},{"authorName":"李贺军","id":"a6d2e988-95ba-46fb-a17c-e04ecc15cb9e","originalAuthorName":"李贺军"},{"authorName":"张雨雷","id":"6fa45399-436b-4b69-a330-c2ebbf9263e8","originalAuthorName":"张雨雷"},{"authorName":"黎云玉","id":"331154f5-4c0a-4fd0-ba3f-c898a31e1dc5","originalAuthorName":"黎云玉"},{"authorName":"刘长青","id":"2e24ef37-b5c7-49f9-9640-f6dd6ecf5a5d","originalAuthorName":"刘长青"}],"doi":"10.7502/j.issn.1674-3962.2013.11.01","fpage":"641","id":"cc90e225-a77a-437a-80ff-03185b270880","issue":"11","journal":{"abbrevTitle":"ZGCLJZ","coverImgSrc":"journal/img/cover/中国材料进展.jpg","id":"80","issnPpub":"1674-3962","publisherId":"ZGCLJZ","title":"中国材料进展"},"keywords":[{"id":"69220c52-d61f-491e-aad4-0334cdbd4aaa","keyword":"硼改性","originalKeyword":"硼改性"},{"id":"6954e484-072a-4243-95ba-bd644f87972f","keyword":"酚醛泡沫","originalKeyword":"酚醛泡沫"},{"id":"dda80b5b-6fd6-43a7-9468-85f6cc1ecdd5","keyword":"压缩强度","originalKeyword":"压缩强度"},{"id":"cdfc1782-764c-4b02-860c-d2d0af4a5616","keyword":"热分解温度","originalKeyword":"热分解温度"},{"id":"6ea54411-03e5-41cd-a5a8-e09e13c1dd28","keyword":"残碳率","originalKeyword":"残碳率"}],"language":"zh","publisherId":"zgcljz201311001","title":"硼改性酚醛泡沫复合材料的制备与性能研究","volume":"","year":"2013"},{"abstractinfo":"用乳液聚合的方法制备了马来酸单十二酯镧-N-环己基马来酰亚胺-丙烯腈-甲基丙烯酸甲酯四元共聚物,将其作为耐热改性剂与PVC共混.研究了马来酸单十二酯镧的用量对共聚物组成、PVC的热性能和力学性能的影响.结果表明,LaTM用量为20%(文中物质含量均为质量百分数)时,共聚物用量为PVC的20%时,共混物的维卡软化点比纯PVC的提高了1.6 ℃,热分解温度Td50比纯PVC提高了12.33 ℃,拉伸强度、冲击强度均明显提高.","authors":[{"authorName":"王月欣","id":"7446b688-a875-409e-842b-f9112f5ae9b2","originalAuthorName":"王月欣"},{"authorName":"王志岭","id":"f931cd7d-ebb8-435f-845c-f6afc7fdcbc1","originalAuthorName":"王志岭"},{"authorName":"张倩","id":"c46328d1-9287-4834-9b1e-0b67fe7af7e8","originalAuthorName":"张倩"},{"authorName":"王辰伟","id":"517c5573-a59d-41da-a85a-8de04e830a1e","originalAuthorName":"王辰伟"},{"authorName":"李艳星","id":"a6b668de-ed3c-4a31-9e68-5ed4b6d211de","originalAuthorName":"李艳星"}],"doi":"","fpage":"149","id":"c761c785-96ce-4fa2-9686-6b7aae71e0b8","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"0da9014b-f8a3-4102-89cd-6a3ba9e96a17","keyword":"有机稀土","originalKeyword":"有机稀土"},{"id":"3a7ba977-9c9a-4f45-a02e-787c53ed7e73","keyword":"N-环己基马来酰亚胺","originalKeyword":"N-环己基马来酰亚胺"},{"id":"ddd938c5-59ab-4835-b43d-fad5b5d2cc4b","keyword":"热分解温度","originalKeyword":"热分解温度"},{"id":"4ffedb6c-e733-4690-9676-3e878d8b43aa","keyword":"耐热性","originalKeyword":"耐热性"}],"language":"zh","publisherId":"gfzclkxygc200811039","title":"含稀土的N-环己基马来酰亚胺耐热改性剂在PVC中的应用","volume":"24","year":"2008"},{"abstractinfo":"利用溶胶-凝胶技术制备了纳米氧化铝改性纳迪克酰亚胺复合材料.采用傅里叶红外光谱(FTIR)、扫描电镜(SEM)和原子力显微镜(AFM)等手段对该材料的结构及表面断裂形貌进行了表征,其粒子尺寸为40~100 nm.研究了氧化铝添加量对该复合材料耐电晕性能和耐热性能的影响.结果表明:随着氧化铝含量的增加,材料的耐电晕性能显著增强,当纳米氧化铝质量分数为16%、试样厚度25 μm、击穿场强60 kV/mm时,耐电晕寿命达130 h,是改性前的11倍;热分解温度为498.63℃,比掺杂前提高20℃,剪切强度略有降低.","authors":[{"authorName":"陈宇飞","id":"6b914b32-2e1a-4025-961e-7feb5f25927b","originalAuthorName":"陈宇飞"},{"authorName":"范勇","id":"bf6f746a-9ca9-4444-bff9-f80e2e73414f","originalAuthorName":"范勇"}],"doi":"10.3321/j.issn:1000-3851.2008.04.010","fpage":"51","id":"facac6aa-12ab-4387-aa89-d783ba3341f0","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"08874ab6-7eec-46bb-8bee-3df915cf5b53","keyword":"纳米氧化铝","originalKeyword":"纳米氧化铝"},{"id":"3f93a6df-b371-4a83-ac63-f23847c70a06","keyword":"纳迪克酰亚胺","originalKeyword":"纳迪克酰亚胺"},{"id":"3233c503-2d5e-43ae-94f7-63b4edee4c90","keyword":"耐电晕性能","originalKeyword":"耐电晕性能"},{"id":"4c111323-121e-48c5-86ae-f5d815f64610","keyword":"热分解温度","originalKeyword":"热分解温度"}],"language":"zh","publisherId":"fhclxb200804010","title":"活性氧化铝改性纳迪克酰亚胺的性能研究","volume":"25","year":"2008"},{"abstractinfo":"采用化学氧化还原法和超声分散制备出石墨烯(GN),采用X射线衍射仪、红外光谱和原子力显微镜对所得石墨烯进行了分析和表征.结果表明,氧化石墨烯被较好地还原为石墨烯并且成功分散为纳米级厚度;采用溶液超声共混法制备石墨烯/硅丙乳液复合材料.对复合材料成膜进行扫描电镜表征、热重分析、导电渗流测试、力学性能以及耐水、耐腐蚀性测试,发现复合材料具有较低的渗滤阈值(质量分数0.5%),石墨烯用量大于0.9%时,体积电阻率基本稳定在103Ω·cm以下,导电性有了明显提高;石墨烯的用量为0.7%时,与硅丙乳液相比,复合材料拉伸强度提高了15.5%,断裂伸长率下降了3.6%,耐水性提高了14%,失重5%时的热分解温度提高了43℃,耐腐蚀性能也得到了极大提高.","authors":[{"authorName":"巨浩波","id":"dc1e7907-9dbd-4216-a99c-0209e9b8215a","originalAuthorName":"巨浩波"},{"authorName":"吕生华","id":"411880ad-567f-4a6a-91b5-e6217baf66d0","originalAuthorName":"吕生华"},{"authorName":"孙婷","id":"144e90f2-42c3-4005-a8ac-c534bc3cc162","originalAuthorName":"孙婷"},{"authorName":"孔宪辉","id":"b79a2028-4ad1-4fe1-97c3-589fea4abbe7","originalAuthorName":"孔宪辉"}],"doi":"","fpage":"144","id":"ba6f1511-46f4-4f8b-b104-608b8c540e91","issue":"8","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"b4fa717f-5928-4ebd-b7e0-a7c4f5f00717","keyword":"石墨烯","originalKeyword":"石墨烯"},{"id":"08b02ac7-915f-44c9-ae72-85e4652bd071","keyword":"硅丙乳液","originalKeyword":"硅丙乳液"},{"id":"e5c4ae0a-4a18-4b3f-afa8-09366e985050","keyword":"热分解温度","originalKeyword":"热分解温度"},{"id":"1745877b-3f67-4625-b663-519500604f82","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"54161999-a231-43eb-be6d-572a6d0fa86e","keyword":"耐水性","originalKeyword":"耐水性"},{"id":"373c1ee4-d9ed-4229-b509-cd7b5b3b10af","keyword":"导电性","originalKeyword":"导电性"}],"language":"zh","publisherId":"gfzclkxygc201408029","title":"石墨烯和硅丙乳液复合材料的制备及性能","volume":"30","year":"2014"}],"totalpage":6546,"totalrecord":65456}