{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"主要介绍了PMMA/MWNT纳米复合材料、PMMA/层状硅酸盐纳米复合材料、PMMA/氧化物纳米复合材料这3种常见聚合物基纳米复合材料的制备方法,同时对每种体系特点进行了论述.最后指出纳米复合材料制备方法、应用以及开发新的PMMA基纳米复合体系是今后的主要研究方向.","authors":[{"authorName":"吴致进","id":"704efb1f-d241-49e1-9ca1-b4a2c5d7fa84","originalAuthorName":"吴致进"},{"authorName":"李春忠","id":"114ae36e-ab17-40c6-be0e-785b514abe04","originalAuthorName":"李春忠"}],"doi":"","fpage":"46","id":"29597da3-b19f-4857-9a9e-dfd5ea30e382","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"a5a1c86c-1184-466a-b4a7-bb322a8ae717","keyword":"聚合物基纳米复合材料","originalKeyword":"聚合物基纳米复合材料"},{"id":"ff967ab8-2b04-455d-b5bd-1cc27869b355","keyword":"PMMA/MWNT","originalKeyword":"PMMA/MWNT"},{"id":"f683dcc4-e231-403e-a697-2574a78d63c8","keyword":"PMMA/层状硅酸盐","originalKeyword":"PMMA/层状硅酸盐"},{"id":"5c145f22-5a10-49a7-afea-6310fcbff36c","keyword":"PMMA/氧化物","originalKeyword":"PMMA/氧化物"}],"language":"zh","publisherId":"cldb2013z1014","title":"PMMA纳米复合材料的研究进展和制备方法","volume":"27","year":"2013"},{"abstractinfo":"针对目前常规高温固体氧化物电解池(SOEC)阴极材料水蒸气扩散阻力大、极化能量损失高和稳定性差的不足, 本研究采用聚甲基丙烯酸甲酯(PMMA)造孔剂对SOEC阴极材料进行了微观结构调整和优化, 以提高其电解过程制氢性能和耐候性. 实验结果表明: 采用PMMA造孔剂可以显著降低水蒸气的扩散阻力, 提高SOEC的电解效率和制氢性能. 当PMMA的添加量为10wt%时, 阴极材料的孔隙率高达45%, 孔形规整圆形, 分布均匀, 孔径约为10 um. 微观结构改进后, 阴极的电导率为6726 S/cm, 运行稳定, 具有较高的机械强度. 当电解温度为850℃, 电压1.3V时, 与采用淀粉造孔剂的SOEC相比, 采用PMMA造孔剂的SOEC在运行过程中水蒸气扩散阻抗降低50%, 产氢率提高50%. ","authors":[{"authorName":"于波","id":"b5ee4a0b-72f9-4725-869d-d366bf77e1ea","originalAuthorName":"于波"},{"authorName":"张文强","id":"b2311a90-90d0-4ec3-877d-76d5a387eedd","originalAuthorName":"张文强"},{"authorName":"梁明德","id":"5fe30633-c465-4a71-9fcc-c7f5b63a38a7","originalAuthorName":"梁明德"},{"authorName":"张平","id":"49ab9d9d-4ce7-48fd-9b92-73bc5222333a","originalAuthorName":"张平"},{"authorName":"徐景明","id":"88927205-527c-4b58-94e2-33fbf9bcfc8c","originalAuthorName":"徐景明"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2011.00807","fpage":"807","id":"6bbb7972-8b07-4f00-98ac-33ac78a18064","issue":"8","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"87fefc45-b6d4-45cf-8a98-020fba76b5bf","keyword":"高温固体氧化物电解池","originalKeyword":"高温固体氧化物电解池"},{"id":"6d9de7d9-be44-4ca1-82e4-e31c69a5ac37","keyword":" nuclear hydrogen production","originalKeyword":" nuclear hydrogen production"},{"id":"71e6cedb-2151-493a-95e0-764b6bd74d85","keyword":" microstructure modification","originalKeyword":" microstructure modification"},{"id":"a4858356-ef96-410d-b1cf-69a75d728f2e","keyword":" cathode support layer","originalKeyword":" cathode support layer"},{"id":"690755df-dda8-4140-bccb-c2fd5718ea86","keyword":" diffusion","originalKeyword":" diffusion"}],"language":"zh","publisherId":"1000-324X_2011_8_5","title":"PMMA造孔剂对固体氧化物电解池制氢性能的影响","volume":"26","year":"2011"},{"abstractinfo":"针对目前常规高温固体氧化物电解池(SOEC)阴极材料水蒸气扩散阻力大、极化能量损失高和稳定性差的不足,本研究采用聚甲基丙烯酸甲酯(PMMA)造孔剂对SOEC阴极材料进行了微观结构调整和优化,以提高其电解过程制氢性能和耐候性.实验结果表明:采用PMMA造孔剂可以显著降低水蒸气的扩散阻力,提高SOEC的电解效率和制氢性能.当PMMA的添加量为10wt%时,阴极材料的孔隙率高达45%,孔形规整圆形,分布均匀,孔径约为10μm.微观结构改进后,阴极的电导率为6726 S/cm,运行稳定,具有较高的机械强度.当电解温度为850℃,电压1.3V时,与采用淀粉造孔剂的SOEC相比,采用PMMA造孔剂的SOEC在运行过程中水蒸气扩散阻抗降低50%,产氢率提高50%.","authors":[{"authorName":"于波","id":"9c800a0f-2f2b-4815-8b6a-2fd35a41d10b","originalAuthorName":"于波"},{"authorName":"张文强","id":"b6c32d45-1877-4717-aa86-ff2f92b2402b","originalAuthorName":"张文强"},{"authorName":"梁明德","id":"03bb23d0-c06c-4f1f-bbf3-6bc7223afbef","originalAuthorName":"梁明德"},{"authorName":"张平","id":"d6a7c0e1-2006-4710-b084-bee143c5d55c","originalAuthorName":"张平"},{"authorName":"徐景明","id":"fb09e122-458d-462f-9572-f9ea6ee56fbc","originalAuthorName":"徐景明"}],"doi":"10.3724/SP.J.1077.2011.00807","fpage":"807","id":"356db361-e474-42f1-a2c3-b92070b507ea","issue":"8","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"43375679-468e-42f6-a90b-23431f58002e","keyword":"高温固体氧化物电解池","originalKeyword":"高温固体氧化物电解池"},{"id":"899c4231-347e-4b99-944f-3cb6c83266fe","keyword":"核能制氢","originalKeyword":"核能制氢"},{"id":"b90f968f-5fd8-4799-ae4f-f58ac028d6f1","keyword":"微观结构","originalKeyword":"微观结构"},{"id":"f65d4f5e-577d-485a-9dba-9e6615881e07","keyword":"阴极支撑层","originalKeyword":"阴极支撑层"},{"id":"072b2aab-f977-49ef-acf4-59a9b322edf5","keyword":"扩散","originalKeyword":"扩散"}],"language":"zh","publisherId":"wjclxb201108005","title":"PMMA造孔剂对固体氧化物电解池制氢性能的影响","volume":"26","year":"2011"},{"abstractinfo":"通过原位聚合法制备了以聚甲基丙烯酸甲酯为基体,与镁铁双氢氧化物具有良好相容性的层离型纳米复合材料.实验结果表明,MgFe-LDH的引入显著提高了聚合物的热解温度,两者间的相互作用和片层的物理阻隔都起到了作用.采用Flynn-Wall-Ozawa和Friedman法对体系进行热动力学分析,两种计算结果相互验证,表明纳米复合材料的热解表观活化能较纯样明显增大,热分解过程受到阻碍.这种热稳定化作用不仅与片层的物理阻隔有关,也应当与热解反应的能量阻隔有关.","authors":[{"authorName":"丁严艳","id":"ac52db80-d3f8-4342-9661-68769c402f46","originalAuthorName":"丁严艳"},{"authorName":"徐亮","id":"c49c4754-b21c-48a7-91a3-f870394da6ab","originalAuthorName":"徐亮"},{"authorName":"胡更生","id":"747bea0e-f3e0-4af4-a3b1-1bd185f36d27","originalAuthorName":"胡更生"}],"doi":"","fpage":"84","id":"fd5aa344-d4e0-4b33-9167-11d6c3cc2eb3","issue":"9","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"05fe5709-e19e-41ff-a0f4-26ace7826ad0","keyword":"热降解","originalKeyword":"热降解"},{"id":"5ef7782f-b02a-47de-997a-4f8797815b70","keyword":"动力学分析","originalKeyword":"动力学分析"},{"id":"29b32c79-102e-43ea-b9e6-dbc164b7b6f1","keyword":"双氢氧化物","originalKeyword":"双氢氧化物"}],"language":"zh","publisherId":"gfzclkxygc201009023","title":"层离型PMMA/镁铁双氢氧化物纳米复合材料的热动力学","volume":"26","year":"2010"},{"abstractinfo":"氧化物冶金是利用钢中细小非金属夹杂物诱导晶内铁素体形核细化晶粒的新技术,应用氧化物冶金技术已成功开发出了高强度高韧性的非调质钢和低碳钢.讨论了氧化物冶金型钢的显微组织特征,分析了氧化物冶金型钢中非金属夹杂物的性质和晶内铁素体的形核机理,简述了氧化物冶金技术的应用.","authors":[{"authorName":"余圣甫","id":"f1b56692-23a2-470a-93cf-e5ddb2cd812b","originalAuthorName":"余圣甫"},{"authorName":"雷毅","id":"62f73764-bc5f-4de1-8731-c574cf815af2","originalAuthorName":"雷毅"},{"authorName":"黄安国","id":"bed379d0-648a-4383-8f6d-bd1fafd6326a","originalAuthorName":"黄安国"},{"authorName":"谢明立","id":"3ebe4c02-8f18-433c-9ee1-f1c89eab3a1b","originalAuthorName":"谢明立"},{"authorName":"李志远","id":"efc09c4c-dee6-4632-86b9-ba95a7340a4b","originalAuthorName":"李志远"}],"doi":"","fpage":"50","id":"5735112b-3688-491c-9cef-65a0a224d4b9","issue":"8","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"1634fdc7-9579-47f5-872f-8e80cc10ba7b","keyword":"氧化物冶金","originalKeyword":"氧化物冶金"},{"id":"b46fb7ff-da68-4970-87f5-e04c1d84028f","keyword":"非金属夹杂物","originalKeyword":"非金属夹杂物"},{"id":"ab679a34-bd06-4a15-a880-6f0f1af221df","keyword":"晶内铁素体","originalKeyword":"晶内铁素体"}],"language":"zh","publisherId":"cldb200408015","title":"氧化物冶金技术及其应用","volume":"18","year":"2004"},{"abstractinfo":"利用SEM、TEM及HREM研究了氧化物-非氧化物复合材料的显微结构特征.结果表明:(1)在氧化物基体中引入非氧化物,非氧化物颗粒将穿插于氧化物颗粒构成的骨架中;在非氧化物基体中引入氧化物,氧化物颗粒将弥散于非氧化物颗粒构成的编织状结构的空隙处.(2)氧化物与非氧化物之间的结合方式可分为:(a)直接结合(在没有助烧剂、直接烧结的情况下);(b)通过晶界非晶质薄膜相结合(在有助烧剂奉与的直接烧结和反应烧结的情况下).(3)所研究的试祥中普遍存在有微裂纹,这些微裂纹将有助于材料抗热震性的改善.","authors":[{"authorName":"钟香崇","id":"48614bb6-5216-4e17-9331-d926317ca75f","originalAuthorName":"钟香崇"},{"authorName":"赵海雷","id":"86416341-3a6c-42d2-8ac6-70163dabd443","originalAuthorName":"赵海雷"}],"doi":"10.3969/j.issn.1001-1935.2000.03.001","fpage":"125","id":"2c883f0d-1545-4036-b005-7785ecdbb5f2","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"e4bb60a1-2b9d-4e9c-bd08-619d428b95f3","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"17545f24-afa2-40c2-9390-9002b9682f3a","keyword":"氧化物","originalKeyword":"氧化物"},{"id":"110c25dc-0b79-4765-93f8-3aa6c24b73ac","keyword":"非氧化物","originalKeyword":"非氧化物"},{"id":"fd04a5d0-0180-4f48-9995-1ac9f6e6dd4a","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"nhcl200003001","title":"氧化物-非氧化物复合材料的显微结构特征","volume":"34","year":"2000"},{"abstractinfo":"对氧化物-非氧化物复合材料(如ZCM-SiC,ZCM-BN,O’-Sialon-ZrO2,β-Sialon-Al2O3等)的高温性能(强度、抗热震性、抗氧化性等)进行了研究。结果表明:(1)所研究的氧化物-非氧化物复合材料的高温强度明显优于碳结合材料的高温强度。(2)在氧化物基质中引入非氧化物,可提高材料的抗热震性。(3)在非氧化物基质中引入氧化物可明显改善材料的抗氧化性。","authors":[{"authorName":"钟香崇","id":"4dec7fe2-ae4e-4a8b-9676-587e1696053f","originalAuthorName":"钟香崇"},{"authorName":"赵海雷","id":"35a8e0bd-7317-4ffa-80e6-188c54749d64","originalAuthorName":"赵海雷"}],"doi":"10.3969/j.issn.1001-1935.2000.02.001","fpage":"63","id":"088e4676-2288-46c6-8a3a-cbd7839d17fd","issue":"2","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"a520c146-9397-4abf-934a-af5b1082f954","keyword":"氧化物-非氧化物复合耐火材料","originalKeyword":"氧化物-非氧化物复合耐火材料"},{"id":"b5d2f79a-c195-43ec-b48c-e64bc336efc5","keyword":"高温性能","originalKeyword":"高温性能"}],"language":"zh","publisherId":"nhcl200002001","title":"氧化物-非氧化物复合耐火材料高温性能的研究","volume":"34","year":"2000"},{"abstractinfo":"氧化物/氧化物陶瓷基复合材料(CMCs )具有很多优良的性能,如高比强度、高比模量、优异的抗氧化性能等,可应用于航空发动机燃烧室和尾喷管等热端部件。本文概述了氧化物/氧化物CMCs的增强纤维和陶瓷基体,指出单晶氧化物纤维和莫来石陶瓷基体应用潜力较大;从改善纤维/基体界面结合程度的角度出发,综述了从界面相和多孔基体角度提高力学性能的方案;分析了限制其应用的三个关键问题(缺口敏感度、蠕变容忍度和耐烧蚀性能),最后对其未来发展进行了展望。","authors":[{"authorName":"王义","id":"669fc4c2-3d3e-4d77-b379-d7e615c948b8","originalAuthorName":"王义"},{"authorName":"刘海韬","id":"59c172a2-1774-4986-9b36-3387aaed44de","originalAuthorName":"刘海韬"},{"authorName":"程海峰","id":"4760b1d4-2229-4485-98f6-c71e170c0ca3","originalAuthorName":"程海峰"},{"authorName":"王军","id":"f6d9dc52-70b0-43a0-ac65-4ab36cfa278c","originalAuthorName":"王军"}],"doi":"10.3724/SP.J.1077.2014.13507","fpage":"673","id":"2b210710-b274-4d15-9ca7-71dcc69149da","issue":"7","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"1fbc11c9-5361-4d99-af7f-771ff297099f","keyword":"氧化物","originalKeyword":"氧化物"},{"id":"50112f1c-ace3-4ff7-a559-18cd2d98729d","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"727f43d0-1bf7-4daf-9c6c-3d787786f43e","keyword":"界面相","originalKeyword":"界面相"},{"id":"7af9ec99-f663-460d-99d4-415fee378ec8","keyword":"多孔基体","originalKeyword":"多孔基体"},{"id":"46adfb2e-0c6d-40a1-bcb5-735f4baf387b","keyword":"性能","originalKeyword":"性能"},{"id":"0735d764-1906-45e9-9ac9-53774d374472","keyword":"综述","originalKeyword":"综述"}],"language":"zh","publisherId":"wjclxb201407001","title":"氧化物/氧化物陶瓷基复合材料的研究进展","volume":"","year":"2014"},{"abstractinfo":"介绍了氧化物冶金技术的概念及发展现状,晶内铁素体的作用和形成机理,氧化物种类对晶内铁素体形成的影响及脱氧剂的选择;钢中氧浓度、凝固过程中冷却速度对氧化物夹杂尺寸和数量的影响.以钛脱氧钢为例,指出了有利于晶内针状铁素体形成的夹杂物尺寸、数量、奥氏体晶粒尺寸、氧浓度、铝浓度和氮浓度.","authors":[{"authorName":"李新明","id":"20a529bb-9c39-4aa7-b482-5b9b74a4edf6","originalAuthorName":"李新明"},{"authorName":"郑少波","id":"b5a40ffd-67d5-4da5-92e4-86a8b64d3f94","originalAuthorName":"郑少波"},{"authorName":"郑庆","id":"0fac717a-19ea-4460-bc69-092cba71a407","originalAuthorName":"郑庆"},{"authorName":"朱立新","id":"19449e9d-1df4-476a-9f8f-34d5a544986b","originalAuthorName":"朱立新"}],"doi":"10.3969/j.issn.1001-7208.2005.05.013","fpage":"55","id":"fa4cceb7-4263-4655-b4be-7142d96c799c","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"8edd0eb8-6bec-40e0-86f1-4ad5186a5823","keyword":"钢的氧化物冶金","originalKeyword":"钢的氧化物冶金"},{"id":"a34013f5-9a67-4041-8166-fce02b06131d","keyword":"氧化物夹杂","originalKeyword":"氧化物夹杂"},{"id":"81e5eceb-5cdd-43ed-81ba-1dcce6009762","keyword":"晶内铁素体","originalKeyword":"晶内铁素体"}],"language":"zh","publisherId":"shjs200505013","title":"钢的氧化物冶金技术","volume":"27","year":"2005"},{"abstractinfo":"介绍了氧化物热电材料的研究现状及发展趋势,以及氧化物热电材料的特殊优点;同时对氧化物热电材料做了大致分类.深入介绍了关于错配层氧化物高热电势起因的最新研究成果;广泛介绍了perovskite结构氧化物的置换对热电性能的影响,探讨了其导电机理及热电势的可能起因.最后介绍了透明导电氧化物热电材料.","authors":[{"authorName":"陈柔刚","id":"b5222517-9508-4d8d-8874-465ec5050aab","originalAuthorName":"陈柔刚"},{"authorName":"杨君友","id":"7b851594-0c80-438c-b897-d53564337b53","originalAuthorName":"杨君友"},{"authorName":"朱文","id":"caad3900-4778-4943-8c0d-67e539989162","originalAuthorName":"朱文"}],"doi":"","fpage":"1299","id":"bf04152e-298f-4a37-a307-5440a9c4d604","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"93119bfb-5891-40fd-bcb2-113a84d6d642","keyword":"氧化物热电材料","originalKeyword":"氧化物热电材料"},{"id":"4e378fef-3a57-4187-b1a2-47ba94c67f93","keyword":"错配层钴氧化物","originalKeyword":"错配层钴氧化物"},{"id":"cbad98d6-7a5f-4378-b9bd-27e7cd41002c","keyword":"perovskite结构","originalKeyword":"perovskite结构"},{"id":"895e3365-94ff-4e82-804e-e6233e263f0f","keyword":"TCO","originalKeyword":"TCO"}],"language":"zh","publisherId":"gncl2004z1365","title":"氧化物热电材料的研究进展","volume":"35","year":"2004"}],"totalpage":5750,"totalrecord":57493}