{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"The magnetic and optical properties of multiferroic GdMnO(3) nanoparticles synthesized by a polymerized complex method have been investigated. The GdMnO(3) nanoparticles crystallized in orthorhombic perovskite-type structure. The zero-field-cooled and field-cooled magnetizations show that complicated magnetic transitions occur in a temperature range from 2 to 60 K, which were confirmed by magnetic hysteresis loops. Three shoulder absorption peaks centered at about 2.0, 2.3, and 2.7 eV are attributed to the Mn (3d)-electronic transitions, while an absorption peak at around 4.1 eV corresponds to the charge-transfer transitions between O (2p) and Mn (3d) states. UV emission at about 396 and 406 nm and blue emission at around 466 nm have been found, which may be attributed to the spin-allowed charge-transfer transitions. (C) 2010 American Institute of Physics. [doi:10.1063/1.3358007]","authors":[],"categoryName":"|","doi":"","fpage":"","id":"096a1106-31e1-4ab4-b814-cf9ea75b1062","issue":"9","journal":{"abbrevTitle":"JOAP","id":"7dcf8a89-0513-40ee-be2d-759941dcef7e","issnPpub":"0021-8979","publisherId":"JOAP","title":"Journal of Applied Physics"},"keywords":[{"id":"777e7b51-e8ed-4a96-a51c-9308aa5ee562","keyword":"bifeo3 nanoparticles;lamno3;spectra","originalKeyword":"bifeo3 nanoparticles;lamno3;spectra"}],"language":"en","publisherId":"0021-8979_2010_9_2","title":"Magnetic and optical properties of multiferroic GdMnO(3) nanoparticles","volume":"107","year":"2010"},{"abstractinfo":"Polycrystalline BiFeO3 nanoparticles (size 80-120 nm) are prepared by a simple sol-gel technique. Such nanoparticles are very efficient for photocatalytic decomposition of organic contaminants under irradiation from ultraviolet to visible frequencies. The BiFeO3 nanoparticles also demonstrate weak ferromagnetism of about 0.06 mu(B)/Fe at room temperature, in good agreement with theoretical calculations.","authors":[],"categoryName":"|","doi":"","fpage":"2889","id":"21d2677d-992c-4717-8355-d4dedd8b28a5","issue":"19","journal":{"abbrevTitle":"AM","id":"65e9b707-ac6c-4ea7-bf25-6e77df8406d2","issnPpub":"0935-9648","publisherId":"AM","title":"Advanced Materials"},"keywords":[{"id":"8efb6140-2fc3-4737-bda9-e983fa828122","keyword":"polarization;ceramics;crystal","originalKeyword":"polarization;ceramics;crystal"}],"language":"en","publisherId":"0935-9648_2007_19_1","title":"Visible-light photocatalytic properties of weak magnetic BiFeO3 nanoparticles","volume":"19","year":"2007"},{"abstractinfo":"BiFeO3是少数的在室温下同时具有铁磁性和铁电性的铁磁电材料之一,在信息存储、传感器和自旋电子器件等方面都有潜在的应用前景.本文通过对BiFeO3薄膜的结构、磁性起源、制备工艺和应用领域等方面的综述,提出并设计了水热法和仿生法这两种新的制备BiFeO3薄膜的湿化学方法,并展望了BiFeO3薄膜今后的研究和发展趋势.","authors":[{"authorName":"张琼","id":"7f8ae404-60a7-4cde-833f-c2ebd8365d64","originalAuthorName":"张琼"},{"authorName":"苗鸿雁","id":"0c08c899-8c92-4992-a107-f8324f1fa20a","originalAuthorName":"苗鸿雁"},{"authorName":"谈国强","id":"b2d7188c-3839-4fc4-8b8e-498fdaa3ab6c","originalAuthorName":"谈国强"}],"doi":"10.3969/j.issn.1001-1625.2007.01.026","fpage":"118","id":"f76e1696-8385-44b3-8902-88bb4b65dcbb","issue":"1","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"7a0e8d8e-efa3-4763-8bc2-b92970696736","keyword":"BiFeO3薄膜","originalKeyword":"BiFeO3薄膜"},{"id":"1dd3d5c2-98e3-47ec-9613-4b39c44adf5d","keyword":"铁磁电材料","originalKeyword":"铁磁电材料"},{"id":"8515af0f-ad43-4d92-b2ba-ba6d69b42681","keyword":"研究进展","originalKeyword":"研究进展"}],"language":"zh","publisherId":"gsytb200701026","title":"BiFeO3薄膜研究进展","volume":"26","year":"2007"},{"abstractinfo":"对掺杂LaMnO3体系的异常磁性、磁电行为的物理模型、巨磁熵行为、以及这类物质在居里点附近的反常热性行为研究进行了综述,提出了可能的研究方向.","authors":[{"authorName":"尹荔松","id":"6c987066-aeca-4d32-85b5-e45afd7c6062","originalAuthorName":"尹荔松"},{"authorName":"周克省","id":"9e1dc73b-2e07-4517-ba4f-62084916555b","originalAuthorName":"周克省"},{"authorName":"张进修","id":"bcf6e804-bf21-4074-b3c8-b965bfb2851d","originalAuthorName":"张进修"}],"doi":"","fpage":"269","id":"24f4f4b1-c6fd-4e00-96a1-2a1faa592b40","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"cbc0229f-1039-4137-8ec7-babff22c9cc9","keyword":"LaMnO3","originalKeyword":"LaMnO3"},{"id":"cad3226f-36da-41ad-9eb0-ced2994f0518","keyword":"磁性","originalKeyword":"磁性"},{"id":"5f3c945a-2d1b-490a-8594-0172253d9cf3","keyword":"热性","originalKeyword":"热性"}],"language":"zh","publisherId":"cldb2004z2082","title":"掺杂LaMnO3体系的磁性和热性研究进展","volume":"18","year":"2004"},{"abstractinfo":"本文利用密度泛函对LaMnO3的电子结构进行了计算.结果表明,LaMnO3反铁磁绝缘基态的形成主要依赖于Jahn-Teller畸变而不是电子强关联,但电子强关联效应对LaMnO3电子结构的影响巨大.为了获得正确的结果,本文计算时考虑了适当的电子强关联修正.通过分析比较,表明在位的库仑能U取3.5eV是一个合理的选择.","authors":[{"authorName":"耿滔","id":"a84a33ce-8511-4528-8c9e-b2c3580bd46e","originalAuthorName":"耿滔"},{"authorName":"庄松林","id":"f59c819d-dc73-4a67-80fa-89c753f58445","originalAuthorName":"庄松林"}],"doi":"","fpage":"558","id":"2a6b6566-1c0d-424e-a824-12a35259b2ff","issue":"4","journal":{"abbrevTitle":"CLKXYGCXB","coverImgSrc":"journal/img/cover/CLKXYGCXB.jpg","id":"13","issnPpub":"1673-2812","publisherId":"CLKXYGCXB","title":"材料科学与工程学报"},"keywords":[{"id":"0300dfcc-6de8-4bae-8c26-580bd3dc4e02","keyword":"LaMnO3","originalKeyword":"LaMnO3"},{"id":"f805bfd3-783e-4831-b561-ef058e1f6a36","keyword":"电子强关联","originalKeyword":"电子强关联"},{"id":"a83a6d1f-3965-4d31-ab28-b981c11ad38a","keyword":"密度泛函","originalKeyword":"密度泛函"}],"language":"zh","publisherId":"clkxygc200904016","title":"电子强关联对LaMnO3电子结构的影响","volume":"27","year":"2009"},{"abstractinfo":"以Bi2O3和Fe2O3为铋源和铁源,采用NaNO3和KNO3复合熔盐法快速合成BiFeO3粉体.研究了熔盐温度、熔盐比例、保温时间和冷却速率对合成粉体物相演变的影响,探讨了复合熔盐法合成BiFeO3的形成过程.熔盐温度为500℃时,Bi2O3和Fe2O3间开始反应生成Bi25 FeO40相;熔盐温度升高到600℃时,开始生成少量BiFeO3;熔盐温度继续提高到650℃与700℃时,几乎都形成纯相BiFeO3,但仍有微量Bi25 FeO40和Bi2 Fe4O9相.淬火抑制BiFeO3的分解,系统研究后发现:当熔盐比为5∶1时,700℃保温10 min后淬火合成粉体几乎为纯相BiFeO3.","authors":[{"authorName":"高琳珊","id":"2b4a0c9d-5918-4790-a788-794620fea23d","originalAuthorName":"高琳珊"},{"authorName":"马志洪","id":"fa8ba086-f91f-41d8-b087-8a323f668713","originalAuthorName":"马志洪"},{"authorName":"陈培津","id":"fea567b3-58b0-4ba1-ba29-0343de8ad095","originalAuthorName":"陈培津"},{"authorName":"郑兴华","id":"d10140f1-edd3-4a51-b577-62770bf6157d","originalAuthorName":"郑兴华"},{"authorName":"汤德平","id":"849ec36e-6b14-4b40-92e8-d56c315d5ab3","originalAuthorName":"汤德平"}],"doi":"","fpage":"2249","id":"a348ad31-7c43-46db-9694-019d2b8d635a","issue":"11","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"2f08c6a9-7306-424d-b4bb-263d720629b6","keyword":"BiFeO3","originalKeyword":"BiFeO3"},{"id":"20cd7966-3883-450c-9eba-c59fcfe9c805","keyword":"熔盐法","originalKeyword":"熔盐法"},{"id":"273e5335-4f60-490a-bb52-af67ca867344","keyword":"快速合成","originalKeyword":"快速合成"},{"id":"6333c6ec-74fc-4746-9561-8cce38a816db","keyword":"淬火","originalKeyword":"淬火"}],"language":"zh","publisherId":"gsytb201311015","title":"熔盐法快速合成BiFeO3粉体","volume":"32","year":"2013"},{"abstractinfo":"以硝酸铋、硝酸铁以及柠檬酸为原料通过化学液相法在普通载玻片、(100)Si片和(100)ITO玻璃上分别制备了不同厚度的BiFeO3薄膜,研究了热处理温度对BiFeO3的形成以及微观形貌的影响.Si片上的薄膜由于与衬底之间的反应,得到纯BiFeO3相热处理温度需低于650℃,而在普通载玻片和ITO玻璃衬底上,525℃到650℃均可以得到结晶良好的纯BiFeO3薄膜.550℃热处理得到的BiFeO3薄膜中的晶粒尺寸大约在7080 nm之间,650℃热处理得到的晶粒尺寸约有140 nm.磁性能测试证明薄膜有弱铁磁性,饱和磁化强度约在7000~9000 A/m.","authors":[{"authorName":"刘珊","id":"5c187fa5-71f6-443b-8893-51010d021bf9","originalAuthorName":"刘珊"},{"authorName":"李剑","id":"4bb6d118-1cc8-4eb7-a9ab-a9a18c7012f2","originalAuthorName":"李剑"},{"authorName":"潘伟","id":"0699d9c3-2e91-4ee8-95a0-25e3e3ae9d39","originalAuthorName":"潘伟"}],"doi":"","fpage":"918","id":"6c98b766-72e0-4730-ae7b-89930f359d04","issue":"z1","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"e02f0bb6-4399-4085-8e2b-0ab2e7c66d83","keyword":"BiFeO3","originalKeyword":"BiFeO3"},{"id":"cd3d6d54-f2e2-4b66-b278-fe9240159df3","keyword":"薄膜","originalKeyword":"薄膜"},{"id":"078b7dfa-b612-49d0-aa62-22c9455cfe78","keyword":"化学液相法","originalKeyword":"化学液相法"}],"language":"zh","publisherId":"xyjsclygc2007z1259","title":"化学液相法制备BiFeO3薄膜","volume":"36","year":"2007"},{"abstractinfo":"用柠檬酸络合法制备了LaMnO3复合氧化物,用XRD,IR,UV - Vis等对其进行表征测试,并研究了煅烧温度,A位掺杂Pb2+和催化剂投加量对其光催化降解活性艳红X -3B的影响.结果表明,制得的催化剂均为钙钛矿型结构,700℃煅烧的催化剂有较好的光催化活性,pb2掺杂能显著提高LaMnO3的光催化活性.","authors":[{"authorName":"牛新书","id":"4089a2ba-f71c-4eda-b967-db5c1102dcab","originalAuthorName":"牛新书"},{"authorName":"楚慧慧","id":"fa5433f0-73e5-4e74-a586-587b3838422a","originalAuthorName":"楚慧慧"},{"authorName":"李素娟","id":"fc4a6b19-3fe1-456f-829d-dae0b2f9fdbd","originalAuthorName":"李素娟"},{"authorName":"周建国","id":"6853936b-6d60-47a4-b918-f9ae240fe892","originalAuthorName":"周建国"}],"doi":"10.3969/j.issn.1004-0277.2011.06.011","fpage":"51","id":"921c9d0c-5e81-4f60-932f-6a8711a68b15","issue":"6","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"5245ed1f-69e4-4694-880d-2cd6ace38ffe","keyword":"柠檬酸络合法","originalKeyword":"柠檬酸络合法"},{"id":"47ebdaaa-7814-4260-bf30-21ca1bc9588c","keyword":"钙钛矿","originalKeyword":"钙钛矿"},{"id":"f2ff74e9-56eb-4cf2-81b6-cb0a68f4b5f9","keyword":"LaMnO3","originalKeyword":"LaMnO3"},{"id":"269ce657-ae2e-43f4-a96c-45b0694e9efd","keyword":"光催化","originalKeyword":"光催化"}],"language":"zh","publisherId":"xitu201106011","title":"柠檬酸络合法制备LaMnO3及其光催化活性研究","volume":"32","year":"2011"},{"abstractinfo":"BiFeO3是一种典型的铁磁电材料,因为室温下共存的铁电性与磁性以及在新型存储器件,自旋电子器件方面都有着广泛的应用前景使其受到了广泛的关注.综述了BiFeO3陶瓷和薄膜的结构、性能以及制备方法,并提出了研究中需要解决的一些问题.","authors":[{"authorName":"刘红日","id":"1e0f9cd9-c98f-44a0-9ed9-428d4704a5aa","originalAuthorName":"刘红日"},{"authorName":"刘堂昆","id":"4124c26c-41d8-4bb7-916e-b07152d27901","originalAuthorName":"刘堂昆"}],"doi":"","fpage":"90","id":"4e2d11d3-85dd-4788-b50a-975da58fa0d7","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"29d1862c-6cb4-4ac2-a328-5abb3204486b","keyword":"铁磁电材料","originalKeyword":"铁磁电材料"},{"id":"afbedbba-0ca8-4671-8fa0-fd854ec16a52","keyword":"BiFeO3","originalKeyword":"BiFeO3"},{"id":"533cf084-0d22-472e-ae53-5fd04af61fdf","keyword":"磁电效应","originalKeyword":"磁电效应"}],"language":"zh","publisherId":"cldb200505026","title":"铁磁电材料BiFeO3及研究进展","volume":"19","year":"2005"},{"abstractinfo":"采用快速等离子烧结法(SPS)制得纯相BiFeO3靶材,利用脉冲激光沉积(PLD)法将其沉积在Si(100)衬底上,制得BiFeO3薄膜.通过调节各种工艺参数,在沉积温度650℃,氧压2Pa,靶基距5cm,脉冲激光频率7Hz、激光能量350mJ条件下获得了高择优取向、高结晶度的BiFeO3薄膜.在此工艺条件下,又制备了不同厚度的BiFeO3薄膜.用XRD、SEM等手段对薄膜相和形貌进行了表征.结果表明,制备的薄膜有较高的形貌质量,薄膜的铁电、铁磁性能呈现出与厚度的强相关性;其中300nm厚的薄膜质量最好.","authors":[{"authorName":"黄艳芹","id":"3b860d79-b1e7-4bbd-9a99-50f001727d30","originalAuthorName":"黄艳芹"}],"doi":"10.3969/j.issn.1001-9731.2013.10.022","fpage":"1469","id":"3aef4f64-ee16-4665-95f7-b79a650a09a1","issue":"10","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"80560325-5747-4736-aa3b-9075d9a8c374","keyword":"多铁性","originalKeyword":"多铁性"},{"id":"9b9ff780-e277-4511-bdb8-93c211927594","keyword":"BiFeO3","originalKeyword":"BiFeO3"},{"id":"ddc2e497-6b6f-440d-bb33-9170453eab5d","keyword":"快速等离子烧结","originalKeyword":"快速等离子烧结"},{"id":"d1ed6652-f1d6-4d4a-ae2e-98c3a09c214c","keyword":"铁电铁磁性","originalKeyword":"铁电铁磁性"}],"language":"zh","publisherId":"gncl201310022","title":"PLD法制备BiFeO3薄膜及其性能研究","volume":"44","year":"2013"}],"totalpage":6290,"totalrecord":62893}