{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以海藻酸钠(SA)、多壁碳纳米管(MWNTs)为主要原料,通过溶胶-凝胶法制备复合水凝胶球,研究了微球对次甲基蓝(MB)溶液的吸附脱色效果.结果表明:当海藻酸钠溶液的加入量为2%、多壁碳纳米管的含量为0.15%时,120h后微球对次甲基蓝的吸附率可达83.46%. ,","authors":[{"authorName":"张驰","id":"8f135386-55a7-409d-a10f-2ea4b4b1117f","originalAuthorName":"张驰"},{"authorName":"蔡芳昌","id":"510f1fa0-32b7-4a01-9693-5698dedc729a","originalAuthorName":"蔡芳昌"},{"authorName":"马宁","id":"0c8b8db9-0339-4984-b17e-ae1857a021d7","originalAuthorName":"马宁"},{"authorName":"刘甜","id":"c739c320-83b6-4f6f-9ef5-f6644084dd1f","originalAuthorName":"刘甜"},{"authorName":"喻鹏","id":"2f599fc6-6a4f-4f51-833a-f5e897508cec","originalAuthorName":"喻鹏"},{"authorName":"张玉婷","id":"c764d11d-02ba-4a86-b476-9d81bfe24158","originalAuthorName":"张玉婷"},{"authorName":"彭成周","id":"49e69110-608e-430a-8ab2-25a5585650c0","originalAuthorName":"彭成周"},{"authorName":"龚春丽","id":"66cb5753-eb9b-4486-bbbf-a3f7f3c74806","originalAuthorName":"龚春丽"},{"authorName":"周威","id":"9552976b-af56-4501-ac75-d3335052023e","originalAuthorName":"周威"},{"authorName":"文胜","id":"d48bff54-cde0-4d50-b8ad-9a70230bb67a","originalAuthorName":"文胜"},{"authorName":"蒋涛","id":"a73c239f-7287-470f-a3c3-21d66fe9fdf3","originalAuthorName":"蒋涛"}],"doi":"","fpage":"100","id":"726a4bc4-f7c7-46bb-b285-1cf961f70bc4","issue":"18","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3985dccd-f114-40eb-9bce-b532b605dd78","keyword":"海藻酸钠","originalKeyword":"海藻酸钠"},{"id":"17b2c023-bf5d-4578-9afa-939b16b62d9c","keyword":"多壁碳纳米管","originalKeyword":"多壁碳纳米管"},{"id":"59331aa7-ebb6-45ab-a365-3b1b71cff1aa","keyword":"次甲基蓝","originalKeyword":"次甲基蓝"},{"id":"b9ad5b99-5664-4333-a996-685ad4f3fdc9","keyword":"吸附","originalKeyword":"吸附"}],"language":"zh","publisherId":"cldb201218027","title":"海藻酸钠/多壁碳纳米管复合水凝胶球的制备及对次甲基蓝的吸附研究","volume":"26","year":"2012"},{"abstractinfo":"采用溶胶一凝胶法结合二次高温烧结技术,制备了锰系钙钛矿催化剂.利用XRD和EDS对催化剂的物相与元素组成进行了分析,并利用电化学分析方法研究了催化剂的氧还原催化性能.XRD与EDS结果表明,N2气氛二次烧结不改变La0.7Sr0.3-MnO3物相组成,但NH3气氛二次烧结会造成Lao.7 Sr0.3MnO3分解.电化学结果表明,N2气氛二次烧结催化剂的氧还原催化活性高于NH3气氛二次烧结催化剂,其氧还原起始电势与极限电流分别为0.028 V(vs.Hg/HgO)和2.181 mA.cm-2(2 000 r/min).","authors":[{"authorName":"汪广进","id":"c433557e-a3bc-4068-a3c3-134eebc00dae","originalAuthorName":"汪广进"},{"authorName":"程凡","id":"13fae351-45f0-401b-82bc-73ee50d85881","originalAuthorName":"程凡"},{"authorName":"徐甜","id":"65c220db-aab0-4377-a73f-dcf93019c553","originalAuthorName":"徐甜"},{"authorName":"余意","id":"3fd3ab2d-d25e-4406-9971-26692d946a67","originalAuthorName":"余意"},{"authorName":"文胜","id":"c153858b-b895-4eca-9477-9e996b32d538","originalAuthorName":"文胜"},{"authorName":"龚春丽","id":"168cd65d-b31f-4ad6-8165-3429c4026194","originalAuthorName":"龚春丽"},{"authorName":"刘海","id":"eeb9f5c6-b486-42fe-b7b6-8acc1de0d084","originalAuthorName":"刘海"},{"authorName":"汪杰","id":"1563228d-3611-487a-9b11-aeccc7144657","originalAuthorName":"汪杰"},{"authorName":"郑根稳","id":"1b03be01-d191-456c-880c-e783132913c6","originalAuthorName":"郑根稳"},{"authorName":"潘牧","id":"9b12793a-2a48-45ac-bad1-0d2b3d27e247","originalAuthorName":"潘牧"}],"doi":"10.11896/j.issn.1005-023X.2017.02.007","fpage":"33","id":"2ae9e787-d3f4-470b-8fb2-b00f5b2c5025","issue":"1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ea4152fe-a79f-4ff9-ae5b-293690a1ca23","keyword":"二次烧结","originalKeyword":"二次烧结"},{"id":"b8a98f3e-0664-47c3-9a10-2e93fbb47243","keyword":"La0.7Sr0.3MnO3","originalKeyword":"La0.7Sr0.3MnO3"},{"id":"4b1211e9-1c4e-43f2-8258-0b0d379d9517","keyword":"氧还原反应","originalKeyword":"氧还原反应"},{"id":"b24d3adc-8595-496f-b192-2b75559ebbda","keyword":"催化活性","originalKeyword":"催化活性"}],"language":"zh","publisherId":"cldb201702007","title":"二次烧结气氛对La0.7Sr0.3MnO3氧还原催化活性的影响","volume":"31","year":"2017"},{"abstractinfo":"采用基于第一性原理的密度泛函理论投影缀加平面波,使用广义梯度近似处理交换关联势能,深入研究了弛豫多相 ZrO2几何结构特征及电子结构。研究发现,单斜、四方和立方 ZrO2能带间隙分别约为3.47 eV、3.96 eV 和3.36 eV。近费米能级态密度分析结果表明,多相 ZrO2的基本性质均由 O 2p 态电子和 Zr 4d 态电子决定。","authors":[{"authorName":"汪广进","id":"3eb54fa5-d134-40cc-980c-7a880b93ad55","originalAuthorName":"汪广进"},{"authorName":"黄菲","id":"de01a0fd-0d8a-4d42-9fb1-546c539358b3","originalAuthorName":"黄菲"},{"authorName":"龚春丽","id":"705022ee-3f53-485f-a0a4-b354ff70e3da","originalAuthorName":"龚春丽"},{"authorName":"刘海","id":"2051119e-957b-4daf-93a3-efc92acf2ab0","originalAuthorName":"刘海"},{"authorName":"程凡","id":"cda15fe6-eb70-4744-96f7-9469bbd11e88","originalAuthorName":"程凡"},{"authorName":"文胜","id":"325a0799-99f9-4bc0-808e-dcc3d8af860e","originalAuthorName":"文胜"},{"authorName":"郑根稳","id":"c824f4fa-00af-4ebf-8e9f-2721959af973","originalAuthorName":"郑根稳"},{"authorName":"潘牧","id":"b61adaa1-7eb0-4e70-b047-a520899dc51b","originalAuthorName":"潘牧"}],"doi":"10.11896/j.issn.1005-023X.2015.12.031","fpage":"145","id":"8d55e145-e6ce-4b9b-9c0c-309cd135f685","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"ebd2f0b3-54c2-4458-947f-7a0a7910ec04","keyword":"ZrO2","originalKeyword":"ZrO2"},{"id":"a6ef02be-5b67-4b82-a032-97ebf993ad92","keyword":"几何结构","originalKeyword":"几何结构"},{"id":"9cc7a7da-cf10-461d-bcf7-047c7f517cf7","keyword":"电子结构","originalKeyword":"电子结构"},{"id":"24db3cd4-5a88-4042-945a-f11890b27644","keyword":"第一性原理","originalKeyword":"第一性原理"}],"language":"zh","publisherId":"cldb201512033","title":"多相 ZrO2几何结构及电子结构第一性原理研究?","volume":"","year":"2015"},{"abstractinfo":"在碳纳米管的羧基化改性过程中采用不同的处理条件对羧基化程度进行对比分析,在碳纳米管/PVA复合材料的制备中采用不同的配比进行混合制备,再对此复合材料进行一系列测定以表征其电导性质.通过红外光谱及激光粒径分析仪对产品形态和结构进行了分析和表征,结果表明,所制备的碳纳米管,羧基已经成功接上碳管、表面形态较规整、纯度较高,具有较好的羧基化碳纳米管结构;热性能测试结果显示,复合材料膜的结晶温度有所提高;导电性能测试结果显示,复合材料呈现出典型的金属性导电性能.","authors":[{"authorName":"蔡芳昌","id":"02723153-1d04-4fab-932e-1085527f1453","originalAuthorName":"蔡芳昌"},{"authorName":"马宁","id":"25dfe47b-2496-403b-b7be-e43ea0f99d11","originalAuthorName":"马宁"},{"authorName":"蒋涛","id":"34f7f342-7178-42df-9c20-acc99dd2e4e6","originalAuthorName":"蒋涛"},{"authorName":"文胜","id":"fa1e2e83-3dc6-4597-82c0-06dde0e54345","originalAuthorName":"文胜"},{"authorName":"文艺","id":"f57318c0-6edb-4f54-a311-1a5fc09ac1f4","originalAuthorName":"文艺"},{"authorName":"刘凯","id":"5bd989ee-da1d-4632-a864-f672d68d6cca","originalAuthorName":"刘凯"},{"authorName":"尚小鹏","id":"21e77d21-347d-4f74-a118-2a936b0f0f91","originalAuthorName":"尚小鹏"},{"authorName":"朱杰","id":"5778f78e-037c-4e92-8474-a2b1a876bcaa","originalAuthorName":"朱杰"},{"authorName":"周威","id":"920ccb61-c362-495c-a433-8f46e36778e8","originalAuthorName":"周威"}],"doi":"","fpage":"47","id":"cf58f487-eda4-4e5e-be2d-02651971aff1","issue":"22","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"e61eb27a-87bb-4cce-8ecf-226a4180a9e7","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"5a926451-a355-4493-a1dc-2cddeb7a197c","keyword":"聚乙烯醇","originalKeyword":"聚乙烯醇"},{"id":"e9e06c07-11fa-4555-9599-0faa023cc0b9","keyword":"电导性能","originalKeyword":"电导性能"}],"language":"zh","publisherId":"cldb201122013","title":"碳纳米管/聚乙烯醇复合材料的制备及其导电性的研究","volume":"25","year":"2011"},{"abstractinfo":"以聚多巴胺包覆碳纳米管为载体,借助聚多巴胺超强的粘附性,利用简单的溶液浸渍法制备了磷钼酸负载碳纳米管(PMA@CNTs)复合物.通过傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电镜(SEM)、透射电镜(TEM)和电化学测试等对复合物的组成、结构、形态和超级电容性能进行了表征.结果表明:聚多巴胺可将磷钼酸均匀且牢固地负载在碳纳米管上.在0.5 mol/L的H2SO4电解液中,复合物的最大比容量为511.7 F/g,最大能量密度可达66.8 Wh/kg,相应的功率密度为1000 W/kg.经过1000次循环,比容量无任何衰减.以上研究结果说明PMA@CNTs复合物在电化学储能领域拥有极好的发展前景.","authors":[{"authorName":"郑譞","id":"b6a78d7b-084c-4ebe-9307-d2fc8093da5e","originalAuthorName":"郑譞"},{"authorName":"龚春丽","id":"d0a0cd62-27cd-4a02-88bb-59af0d6fd896","originalAuthorName":"龚春丽"},{"authorName":"刘海","id":"0def2f96-b700-4d6b-8a7d-2885fc30e637","originalAuthorName":"刘海"},{"authorName":"汪广进","id":"b6c11de3-9ed9-4c0c-82f1-2a664016326b","originalAuthorName":"汪广进"},{"authorName":"程凡","id":"646152cd-29d1-4f48-93e6-18c3090ed65f","originalAuthorName":"程凡"},{"authorName":"郑根稳","id":"4301f9e0-8ac2-4101-a981-f12707208df7","originalAuthorName":"郑根稳"},{"authorName":"文胜","id":"bd3eb42b-8c4f-401f-8f81-f0b3a2c6b09b","originalAuthorName":"文胜"},{"authorName":"熊传溪","id":"9fbd3daf-44ce-4a7c-bf84-837b2c6dbe5e","originalAuthorName":"熊传溪"}],"doi":"10.15541/jim20160182","fpage":"127","id":"d666aeb4-9412-488c-bf38-5002a67efd10","issue":"2","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"db5125e5-cb82-4cf7-a512-7a3905d401d8","keyword":"聚多巴胺","originalKeyword":"聚多巴胺"},{"id":"ceeed39f-4b2c-40f3-a999-2d4953b9d34c","keyword":"碳纳米管","originalKeyword":"碳纳米管"},{"id":"30a0da86-bf21-428c-ac5c-683f64dd6f4c","keyword":"磷钼酸","originalKeyword":"磷钼酸"},{"id":"8ef61b1c-d0c7-4d67-adcf-ccc46fcec764","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"de255c1c-29d1-425c-967e-b16e63d856eb","keyword":"超级电容器","originalKeyword":"超级电容器"}],"language":"zh","publisherId":"wjclxb201702003","title":"磷钼酸负载碳纳米管复合物的制备及其超级电容性能","volume":"32","year":"2017"},{"abstractinfo":"以末端基为羟基的聚二甲基硅氧烷(PDMS)与聚四甲基醚二醇(PTMG)为混合软段合成出一系列含硅氧烷的聚氨酯弹性体.用热重分析(TGA)与Ozawa-Flynn的方法研究了聚合物的热稳定性以及热降解动力学,结果表明,PDMS的引入改善了传统聚氨酯弹性体的热稳定性,合成所得聚合物均具有两个不同的热降解阶段,且随着PDMS含量的增加,聚合物的热稳定性逐渐降低.","authors":[{"authorName":"文胜","id":"c85980b1-fedf-447c-ad77-7bff323d1c98","originalAuthorName":"文胜"},{"authorName":"龚春丽","id":"f3867035-0c91-425a-b35d-f6c6309b967a","originalAuthorName":"龚春丽"},{"authorName":"郑根稳","id":"0ff25837-2c45-4881-8099-728da1fedf93","originalAuthorName":"郑根稳"},{"authorName":"管蓉","id":"c866f187-0553-4fa0-be74-db8abb0c2416","originalAuthorName":"管蓉"}],"doi":"","fpage":"59","id":"38a9ec77-0a6b-46e3-93fd-3a17bbd5703c","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"faadbe1a-ec37-4fdf-a944-91acb5dde20d","keyword":"聚二甲基硅氧烷","originalKeyword":"聚二甲基硅氧烷"},{"id":"d3fa1157-19dd-4adb-ae21-e95303a1b773","keyword":"聚氨酯弹性体","originalKeyword":"聚氨酯弹性体"},{"id":"911a0319-0ee4-4639-b5ab-c24da905c4f6","keyword":"热稳定性","originalKeyword":"热稳定性"},{"id":"6e696072-4a57-4579-9dd1-9b82277cef81","keyword":"Ozawa-Flynn方法","originalKeyword":"Ozawa-Flynn方法"}],"language":"zh","publisherId":"gfzclkxygc200801016","title":"含硅氧烷的聚氨酯弹性体的热稳定性与热降解动力学","volume":"24","year":"2008"},{"abstractinfo":"以磺化聚苯醚(SPPO)和聚醚酰亚胺(PEI)为原料,采用溶液共混法制备了SPPO/PEI共混质子交换膜,并经扫描电镜(SEM)、热重分析、拉伸测试等对膜的结构和性能进行了表征.结果表明,共混膜较纯SPPO膜具有更高的热稳定性、力学性能和尺寸稳定性;SPPO与PEI之间的强烈氢键相互作用使两组分之间并未发生明显的相分离.PEI的引入虽使得共混膜的质子传导率有所下降,但对于PEI含量在40%以下的共混膜,其质子传导率仍维持在约10-2S/cm的数量级水平,能满足质子交换膜的要求.","authors":[{"authorName":"文胜","id":"5cd85676-2373-47a5-924e-27dbe5b75905","originalAuthorName":"文胜"},{"authorName":"龚春丽","id":"c61b26fc-506e-44c4-91e7-697e57da1d2a","originalAuthorName":"龚春丽"},{"authorName":"郑根稳","id":"d4b7c1aa-27c7-43ed-887e-bba93419d88f","originalAuthorName":"郑根稳"},{"authorName":"周毅","id":"4b3c6c32-ea25-46ea-8e2a-4aaf85a33e2c","originalAuthorName":"周毅"},{"authorName":"管蓉","id":"f3efa655-0be8-4a2c-a966-82bbe6f5a0a4","originalAuthorName":"管蓉"}],"doi":"","fpage":"134","id":"8ccb17e7-dedc-4137-9d87-cfdffb11c814","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a51833fa-1d4f-4c0a-9684-7e51bb908516","keyword":"磺化聚苯醚","originalKeyword":"磺化聚苯醚"},{"id":"d0fefd8d-9232-4972-83fa-cba2ee4ecbef","keyword":"聚醚酰亚胺","originalKeyword":"聚醚酰亚胺"},{"id":"a39d65e5-79c9-4ffe-a852-0a51ec37c063","keyword":"质子交换膜","originalKeyword":"质子交换膜"},{"id":"bd1ae598-78d5-4f88-b790-d552afbd608c","keyword":"质子交换膜燃料电池","originalKeyword":"质子交换膜燃料电池"}],"language":"zh","publisherId":"gfzclkxygc201006037","title":"磺化聚苯醚/聚醚酰亚胺共混质子交换膜的制备与性能","volume":"26","year":"2010"},{"abstractinfo":"首先采用液态高分子改性荆对纳米CaCO3进行改性,然后将其与PVC(聚氯乙烯)通过熔融共混制备了CaCO3/PVC复合材料,采用Friedman和Kissinger动力学分析方法对纯PVC和CaCO3/PVC复合材料的热降解动力学进行了探讨.结果表明:在降解第一阶段,纯PVC及CaCO3/PVC复合材料的降解机理是一致的,它们的热降解均具有温度和时间依赖性;改性CaCO3颗粒的加入只改变了PVC的热降解速率,并未改变它的热降解机理.","authors":[{"authorName":"刘海","id":"519aa4ef-991d-4d2d-9ea5-713861834bc8","originalAuthorName":"刘海"},{"authorName":"汪杰","id":"5473c8a4-18c5-4bef-9cba-ddddde615ba2","originalAuthorName":"汪杰"},{"authorName":"文胜","id":"065dc9c5-ef0f-426f-8f27-31ebd3de95cf","originalAuthorName":"文胜"},{"authorName":"龚春丽","id":"067b383f-9833-4d1e-8033-730ebba2490a","originalAuthorName":"龚春丽"},{"authorName":"郑根稳","id":"33b2f6bc-165b-42e6-8203-a95173d26af2","originalAuthorName":"郑根稳"},{"authorName":"熊传溪","id":"10544975-d4aa-43cf-abe4-58b9902965e7","originalAuthorName":"熊传溪"}],"doi":"10.11973/jxgccl201509010","fpage":"45","id":"c1b243f8-8252-4331-8f10-bd9471be7066","issue":"9","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"feeba1e5-2fbb-42d5-90d0-d663311924d6","keyword":"聚氯乙烯(PVC)","originalKeyword":"聚氯乙烯(PVC)"},{"id":"7eed3593-73e2-4710-b246-29ae9a8b009c","keyword":"活化能","originalKeyword":"活化能"},{"id":"e41ffde7-6360-49bf-8d33-5a9548f0eac8","keyword":"热降解动力学","originalKeyword":"热降解动力学"},{"id":"e17a3075-f7de-428d-b341-9f9d3e686fae","keyword":"热稳定性","originalKeyword":"热稳定性"}],"language":"zh","publisherId":"jxgccl201509010","title":"纯PVC和CaCO3/PVC复合材料的热降解动力学","volume":"39","year":"2015"},{"abstractinfo":"以氯磺酸为磺化剂成功制备了一系列不同磺化度的磺化聚醚酰亚胺(SPEI),并对SPEI的结构和热性能进行了研究.采用热重-红外联用技术对SPEI的热失重及失重产物分析表明SPEI有三个阶段的失重,分别归属于吸收的水分、磺酸基团及主链的降解,磺化之后热稳定性有所下降,磺酸基团在230℃~370℃区间发生降解,但主链的降解温度基本保持不变;SPEI的玻璃化转变温度(Tg)明显升高,当磺化度为62.6%时,体系出现了两个独立的Tg.","authors":[{"authorName":"文胜","id":"2f9b68bf-d2e7-4efe-87f8-8e4a09de04d3","originalAuthorName":"文胜"},{"authorName":"龚春丽","id":"a8040c1d-3da9-4473-9772-79d26e94825f","originalAuthorName":"龚春丽"},{"authorName":"郑根稳","id":"d6af89f5-3dec-4022-9273-7f2046ae0769","originalAuthorName":"郑根稳"},{"authorName":"周毅","id":"46915bc8-d85a-4cf2-b441-1f89335d37c3","originalAuthorName":"周毅"},{"authorName":"管蓉","id":"459c131b-b276-4ce3-8576-cda0fcccd3de","originalAuthorName":"管蓉"}],"doi":"","fpage":"84","id":"d3930dec-a9e5-4961-83a0-400d25595c32","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"0185eb3a-6e72-48ca-a9d3-07c07b764f51","keyword":"聚醚酰亚胺","originalKeyword":"聚醚酰亚胺"},{"id":"d8cced91-3964-408a-aff3-0f33722d4d70","keyword":"磺化","originalKeyword":"磺化"},{"id":"22579451-e035-402d-80d9-2bcbc980478e","keyword":"热性能","originalKeyword":"热性能"},{"id":"e826f26a-c2e5-4071-9f69-1f7de63980f3","keyword":"质子交换膜","originalKeyword":"质子交换膜"}],"language":"zh","publisherId":"gfzclkxygc200904023","title":"聚醚酰亚胺的磺化与热性能","volume":"25","year":"2009"},{"abstractinfo":"以偏二氯乙烯和蒙脱土作改性剂,采用种子乳液聚合方法制备了聚丙烯酸酯-偏二氯乙烯/蒙脱土(PEA-VDC/MMT)共聚物复合乳液,研究了蒙脱土质量分数对共聚物乳胶粒径、乳胶膜抗拉强度与断裂伸长率及热稳定性的影响.结果表明,当蒙脱土质量分数从1%增加至5%时,PEA-VDC/MMT共聚物乳胶的平均粒径从141 nm增至243 nm;在蒙脱土质量分数为2%时, 乳胶膜的拉伸强度和断裂伸长率达到最大值,分别为3.23 MPa和1 330%.PEA-VDC共聚物的成碳率和热分解温度均随蒙脱土质量分数的增加而略有增加.","authors":[{"authorName":"郑根稳","id":"2f6c90e2-4d00-4236-bbc3-629f686e2a70","originalAuthorName":"郑根稳"},{"authorName":"文胜","id":"187e36f3-486a-475e-9cc0-6c22d71c9576","originalAuthorName":"文胜"},{"authorName":"刘艳丽","id":"7a96c5b6-3cb0-4d06-b1b9-b9bd7c7130a2","originalAuthorName":"刘艳丽"},{"authorName":"解孝林","id":"000ae659-3842-4fb5-9ac7-1d1a49143b65","originalAuthorName":"解孝林"}],"doi":"10.3969/j.issn.1000-0518.2009.08.014","fpage":"944","id":"f34f8a5d-6ecd-4e1d-b65c-b5a36c161640","issue":"8","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"71bbd9fe-8e41-4b64-94e3-88c27ce3ae04","keyword":"聚丙烯酸酯","originalKeyword":"聚丙烯酸酯"},{"id":"a5bb03d8-d06d-4aa1-8f01-99e483703819","keyword":"偏二氯乙烯","originalKeyword":"偏二氯乙烯"},{"id":"019fab04-1bfb-40f2-9b0b-4a46ba47156e","keyword":"蒙脱土","originalKeyword":"蒙脱土"},{"id":"cd58d852-2580-4a7e-a3f6-aa26ac7b6d99","keyword":"复合乳液","originalKeyword":"复合乳液"}],"language":"zh","publisherId":"yyhx200908014","title":"聚丙烯酸酯-偏二氯乙烯/蒙脱土复合乳液的制备","volume":"26","year":"2009"}],"totalpage":16,"totalrecord":157}