{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"为提高工业纯钛的疲劳性能,首先采用大尺寸弹丸对纯钛表面进行高能,制备出一定深度的纳米表层,然后采用小尺寸弹丸进行表面修整;对复合高能纯钛的表面质量、疲劳强度及疲劳断口形貌进行了分析、测定,并与单纯高能及未的进行了对比.结果表明:采用复合高能可以有效解决工业纯钛高能造成的表面损伤、粗糙度高等问题,从而显著提高纯钛的疲劳强度,比未试样的提高了约52.3%,比单纯高能试样的提高了13.6%.","authors":[{"authorName":"温爱玲","id":"a163652f-cfcc-4d20-99b3-8aa50ff651b9","originalAuthorName":"温爱玲"},{"authorName":"王生武","id":"51be26f4-674b-43f9-bdf7-5a0d3d696d2d","originalAuthorName":"王生武"},{"authorName":"杨军永","id":"1fec8259-791a-488b-aa85-cebf622f1df5","originalAuthorName":"杨军永"},{"authorName":"任瑞铭","id":"75bb542b-06a8-4dab-9173-7441e2626d27","originalAuthorName":"任瑞铭"}],"doi":"","fpage":"55","id":"7ec63270-c395-4eec-9078-810b35b8c799","issue":"1","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"2aa02e53-8943-403f-8b53-3d52ddfd2035","keyword":"复合高能","originalKeyword":"复合高能喷丸"},{"id":"e687d689-4b60-4dcf-a3e1-dab4f6e97606","keyword":"工业纯钛","originalKeyword":"工业纯钛"},{"id":"f781226f-3d93-44ae-89de-784039fbd0b2","keyword":"表面质量","originalKeyword":"表面质量"},{"id":"3b2d9ebc-50e2-4f13-b95a-18ed10835cbe","keyword":"疲劳强度","originalKeyword":"疲劳强度"}],"language":"zh","publisherId":"jxgccl201001015","title":"采用复合高能提高工业纯钛的疲劳性能","volume":"34","year":"2010"},{"abstractinfo":"采用高能技术在铝合金表面制备出纳米晶结构层,利用金相显微镜(OM),扫描电子显微镜(SEM/EDS),透射电子显微镜(TEM)及X射线衍射仪(XRD)等设备对高能铝合金表面层的显微结构及成分进行分析.结果表明:在高能表面纳米化过程中,弹丸中的Fe,Cr原子在强制机械力的作用下转移进入铝合金表面,在材料表层约30 μm的深度范围内形成分布不均匀的合金化层.这可能是纳米晶体中大量界面的形成使合金元素原子能够快速扩散和偏聚的结果.","authors":[{"authorName":"马晋芳","id":"1ee8bf0c-47f3-4682-83a7-1679f52cd04d","originalAuthorName":"马晋芳"},{"authorName":"胡兰青","id":"42e8b7d4-12a1-4cd5-a003-8ce6d6595285","originalAuthorName":"胡兰青"},{"authorName":"许并社","id":"cdf29b4d-88b6-4636-8841-74457140d4d2","originalAuthorName":"许并社"}],"doi":"","fpage":"744","id":"ff0c6dd9-41db-4e34-8968-5112419b724a","issue":"4","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"9cf5eb2d-dbf1-439e-888c-435056dd3e33","keyword":"高能","originalKeyword":"高能喷丸"},{"id":"6899b0d9-69db-4d87-9807-4fe6985f962d","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"00da416e-c44a-4de1-9e22-f49b9a2e0e8d","keyword":"扩散","originalKeyword":"扩散"},{"id":"c4e0836a-fcf2-4ca7-a29e-ee631759fd90","keyword":"合金化","originalKeyword":"合金化"}],"language":"zh","publisherId":"xyjsclygc200704042","title":"高能过程中的物质转移现象","volume":"36","year":"2007"},{"abstractinfo":"采用空气冲压式高能机,研究在一定压力下,时间对ST12钢表面性能的影响.通过XRD计算表层晶粒大小和晶格畸变率,SEM和AFM观察表层形貌,显微硬度计测量从表层到内部梯度上的硬度.结果表明,一定压力下,15 min可以在表层获得晶粒大小为60 nm左右,厚度为25μm的纳米级表层,继续增加时间,两者变化不明显.随着距表面距离的增加,显微硬度呈梯度变化.当时间15 min或更长,显微硬度可以提高65%左右.","authors":[{"authorName":"王虎","id":"07a46072-363a-4fbd-88d8-a05cda615624","originalAuthorName":"王虎"},{"authorName":"詹肇麟","id":"d9f97abc-ed63-4c55-bff6-e1d939e270b4","originalAuthorName":"詹肇麟"},{"authorName":"吴云霞","id":"44f225a1-3f8d-4fb1-a9c1-1227b4f57bff","originalAuthorName":"吴云霞"},{"authorName":"李晓宇","id":"1586aa67-d096-4b29-b702-e8e01d88c6e8","originalAuthorName":"李晓宇"}],"doi":"","fpage":"184","id":"6490bbbe-6959-42f6-a5fc-713aefcb7290","issue":"z2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"baf85d56-45d9-4861-8d28-1803928f7082","keyword":"高能","originalKeyword":"高能喷丸"},{"id":"3f1255a8-2a14-4736-b18b-c31a15065643","keyword":"ST12钢","originalKeyword":"ST12钢"},{"id":"e49a7925-7c72-4d69-84cc-f6a7f15985b3","keyword":"表面性能","originalKeyword":"表面性能"}],"language":"zh","publisherId":"jsrclxb2013z2038","title":"高能对ST12钢表面性能的影响","volume":"34","year":"2013"},{"abstractinfo":"综述了先进表面改性技术研究现状及应用,阐述了微粒子、激光、超声/高能、高压水射流的基本原理,与传统对比发现,微粒子可提高材料的耐磨性,激光可精确控制定位,超声/高能可实现材料表面纳米化,高压水射流可承受半柔性冲击并减少应力集中。此外,对各种技术综合分析并进行对比,认为超声复合高能-微粒,激光-机械)综合性能最佳,并展望了未来应重点开展的工作。","authors":[{"authorName":"黄志超","id":"63c449a4-68e4-412b-8ed4-958a480b5c53","originalAuthorName":"黄志超"},{"authorName":"吕世亮","id":"297abd6a-de20-4fd9-8dea-cb27519f532a","originalAuthorName":"吕世亮"},{"authorName":"谢春辉","id":"2e6575ef-8aa4-4f65-9725-dc672a50cc45","originalAuthorName":"谢春辉"},{"authorName":"卢能芝","id":"c579a4d0-fc11-40ec-b049-f29a9b9704b1","originalAuthorName":"卢能芝"}],"doi":"10.11951/j.issn.1005-0299.20150311","fpage":"57","id":"2cfc4a74-751d-4ce4-b75f-b2dc0b503e30","issue":"3","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"6a622ce0-cd05-49cc-b37a-6b4e2b93b52f","keyword":"微粒子","originalKeyword":"微粒子喷丸"},{"id":"f2906f4b-4b28-456e-a587-c759784e666a","keyword":"激光","originalKeyword":"激光喷丸"},{"id":"b242fa6e-56f6-409d-879d-21334c40c2c8","keyword":"超声/高能","originalKeyword":"超声/高能喷丸"},{"id":"81dabdd2-9466-4abf-880b-c05bf4c48a47","keyword":"高压水射流","originalKeyword":"高压水射流喷丸"},{"id":"9613c4aa-f9ec-433b-9433-f73523466a56","keyword":"复合","originalKeyword":"复合喷丸"}],"language":"zh","publisherId":"clkxygy201503012","title":"先进表面改性技术研究进展","volume":"","year":"2015"},{"abstractinfo":"通过高能方法在工业纯钛表面制备了纳米表层,选择B-Ag40CuZnCdNi钎料对纳米化前后的纯钛进行了不同工艺的钎焊,借助微观组织分析和抗剪强度测定研究了表面自身纳米化对工业纯钛钎焊过程的影响.结果表明:用B-Ag40CuZnCdNi钎料钎焊工业纯钛时,表面自身纳米化预处理提高了母材表面的活性,促进了纯钛母材向液态钎料中的溶解,低温短时焊接时对接头性能提高有利,接头强度比未预处理时提高了13.8%.焊接温度超过650℃后,母材纳米表层的高活性使界面区的金属间化合物层增厚,接头性能反而下降;由于在焊接温度下元素的固态扩散不易进行,纳米化前处理对液态钎料中的元素向母材扩散的影响不明显;母材纳米化前处理后,钎焊时通过降低焊接温度和缩短保温时间,既可发挥纳米表层有益特性,同时避免不利影响.","authors":[{"authorName":"陈春焕","id":"5eec272b-0028-4bce-aa14-f5a3f28ffbb6","originalAuthorName":"陈春焕"},{"authorName":"任瑞铭","id":"0ac57e4c-d77e-4129-a8f1-1a612a406c42","originalAuthorName":"任瑞铭"},{"authorName":"王振波","id":"869a70c0-5dd0-4452-9d2b-a503e52a1311","originalAuthorName":"王振波"}],"doi":"10.3969/j.issn.0258-7076.2013.05.009","fpage":"732","id":"4a037bff-7379-423d-8a76-134079765860","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"22f28d4c-3498-4042-9644-19202e329cbf","keyword":"工业纯钛","originalKeyword":"工业纯钛"},{"id":"acfd1479-ec3b-4734-a734-defcd792fdd6","keyword":"表面自身纳米化","originalKeyword":"表面自身纳米化"},{"id":"f185f62c-1a7f-4272-92e4-9da22e081158","keyword":"钎焊","originalKeyword":"钎焊"}],"language":"zh","publisherId":"xyjs201305009","title":"高能对工业纯钛钎焊的影响","volume":"37","year":"2013"},{"abstractinfo":"采用高能技术对7A52铝合金双丝焊焊接接头表面进行处理,利用XRD、TEM和显微硬度仪对材料表面纳米化处理后的样品进行分析.结果表明:经过20 min高能处理,焊接接头表层的晶粒细化至纳米级,晶粒尺寸细小均匀;母材有η相析出.","authors":[{"authorName":"逯瑶","id":"97ee27fc-1d55-4495-8968-d7cddcb7b94f","originalAuthorName":"逯瑶"},{"authorName":"陈芙蓉","id":"b5c112ee-a703-44d1-afab-3806f416fac4","originalAuthorName":"陈芙蓉"},{"authorName":"解瑞军","id":"89de6664-b435-430c-818d-378f199566b7","originalAuthorName":"解瑞军"},{"authorName":"范文学","id":"727fd923-c490-44c1-8dae-e29a1995b4c7","originalAuthorName":"范文学"}],"doi":"10.3969/j.issn.1004-244X.2010.02.003","fpage":"8","id":"adc9f297-d438-41f3-8ab5-0b7b8c5a2b5a","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"200117d2-bfb1-4ae7-bae6-a3dd05ac3467","keyword":"焊接接头","originalKeyword":"焊接接头"},{"id":"0dab3135-a604-44da-ab3a-defa24b12748","keyword":"表面纳米化","originalKeyword":"表面纳米化"},{"id":"535ca047-64b8-4023-846d-713c9be3f3d8","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"77e392b4-fad4-47fb-b6a2-9fd684bdbbb2","keyword":"高能","originalKeyword":"高能喷丸"}],"language":"zh","publisherId":"bqclkxygc201002003","title":"7A52铝合金焊接接头高能前后的性能分析","volume":"32","year":"2010"},{"abstractinfo":"为了研究40Cr钢表面纳米化对其耐磨性能的影响,对40Cr钢表面进行高能处理,获得纳米结构表层,分析了材料表面高能前后的微观组织变化,测定了纳米化材料表层的残余应力及显微硬度,研究了纳米化表层的磨损性能.结果表明:高能使40Cr钢表层发生了严重塑性变形,显微硬度较基体提高了68%,并使材料表面分布了较高幅值残余压应力,最大可达-736 MPa,残余压应力层深度达0.9 mm;高能表面纳米化能在一定程度上降低40Cr钢表面的摩擦系数,且大大减小其磨损失重,显著改善了40Cr钢的耐磨性能.","authors":[{"authorName":"田峰","id":"04ae4aec-bf11-4c8e-b9b1-fe9783c995f0","originalAuthorName":"田峰"},{"authorName":"杨辉","id":"2774a24f-6f36-4e13-bac0-67003f65b1aa","originalAuthorName":"杨辉"}],"doi":"","fpage":"52","id":"8f455b92-fbba-459a-afcc-4640385b353e","issue":"5","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"866a6e13-da36-45dc-9cd8-18da30ac2c92","keyword":"40Cr钢","originalKeyword":"40Cr钢"},{"id":"4430da1a-675b-4b58-bc49-7cfc24cba927","keyword":"高能","originalKeyword":"高能喷丸"},{"id":"7ed03d79-4e05-42db-b9a7-5f6b0a860efb","keyword":"表面纳米化","originalKeyword":"表面纳米化"},{"id":"9a25326b-5221-47c6-b134-caad3afce3c0","keyword":"耐磨性能","originalKeyword":"耐磨性能"}],"language":"zh","publisherId":"bmjs201305015","title":"40Cr钢表面高能纳米化及其耐磨性能","volume":"42","year":"2013"},{"abstractinfo":"用高能振动法对工业纯钛进行了表面纳米化的研究.用X-射线衍射、光镜和透射电镜对表层变形层金相组织、晶粒尺寸、显微硬度进行分析.结果表明,具有密排六方晶体结构的工业纯钛经高能处理后,在表面可以形成具有一定厚度的纳米晶粒组织;随着高能时间的增加,表面层的晶粒尺寸变小,而表面硬度提高.","authors":[{"authorName":"温爱玲","id":"baba75a8-4ebe-48ba-96f9-4a748937fd9d","originalAuthorName":"温爱玲"},{"authorName":"陈春焕","id":"c5548af5-2d3f-410d-b4a9-ac3811c872c5","originalAuthorName":"陈春焕"},{"authorName":"郑德有","id":"96fd3dad-2c62-4a3f-977f-174a5c531341","originalAuthorName":"郑德有"},{"authorName":"沈继原","id":"45ae9cdc-ab7f-467b-b183-9e5573f8b37b","originalAuthorName":"沈继原"},{"authorName":"任瑞铭","id":"bc9ce5a1-8c8c-4ff1-96c8-366a55044186","originalAuthorName":"任瑞铭"}],"doi":"10.3969/j.issn.1001-3660.2003.03.006","fpage":"16","id":"b4dc2642-6f89-4061-bb93-4b6c6039ab77","issue":"3","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"ad6f5ca8-6f9c-4a0c-abb0-b18cb905ab59","keyword":"表面纳米化","originalKeyword":"表面纳米化"},{"id":"38e50f76-f6bc-4e7a-9e0f-f46fdb2ec5df","keyword":"工业纯钛","originalKeyword":"工业纯钛"},{"id":"91c913a3-c25c-4c72-9df0-71f2064a10eb","keyword":"高能","originalKeyword":"高能喷丸"},{"id":"9996f226-ced9-428b-bfa8-0d91cabb14a2","keyword":"组织","originalKeyword":"组织"},{"id":"9866ed0e-8587-48bb-9850-1e3316a5f747","keyword":"硬度","originalKeyword":"硬度"}],"language":"zh","publisherId":"bmjs200303006","title":"高能表面纳米化对工业纯钛组织性能的影响","volume":"32","year":"2003"},{"abstractinfo":"采用高能方法,在ST12钢表面获得一定厚度的纳米晶层.处理后的样品在温度500℃,保温时间为3h下进行等离子渗钛处理,可以获得一定厚度的渗钛层.运用光学显微镜,扫描电镜,X射线衍射分析和电化学测试系统等测试技术对纳米晶层、渗钛层的组织结构、显微硬度与耐腐蚀性等进行了研究.结果表明,采用高能法,在ST12钢表面获得一定厚度的纳米晶层.高能处理可以显著地降低等离子渗钛的温度.渗钛处理后的ST12钢,其显微硬度和耐腐蚀性能得到了提高.","authors":[{"authorName":"王虎","id":"f3e52369-91eb-4a4f-a60c-d1409385bca0","originalAuthorName":"王虎"},{"authorName":"詹肇麟","id":"1803bbf1-7c8f-44c5-ae69-02240cbbc2fc","originalAuthorName":"詹肇麟"},{"authorName":"吴云霞","id":"b4f35992-3d08-4998-921b-d49efd41cbff","originalAuthorName":"吴云霞"},{"authorName":"李晓宇","id":"deed6ddb-ebf0-4dc8-bd30-7c9e345b0196","originalAuthorName":"李晓宇"},{"authorName":"于晓华","id":"ada21ebc-3dbf-4fe1-a626-112460a60753","originalAuthorName":"于晓华"},{"authorName":"李莉","id":"16b1f3eb-9a89-42a0-81b4-f2e2c397d193","originalAuthorName":"李莉"},{"authorName":"刘建雄","id":"c99132f7-3e65-43ce-98b5-51f9543443d6","originalAuthorName":"刘建雄"}],"doi":"","fpage":"183","id":"5288c508-24ba-4168-988f-1bc9a471a653","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"f3377b88-ce04-4302-a15a-d51ba9afa6a3","keyword":"高能","originalKeyword":"高能喷丸"},{"id":"ee687f46-4719-4c63-bf7d-6768ad24c474","keyword":"ST12钢","originalKeyword":"ST12钢"},{"id":"0703586f-d4bb-4af5-a88e-9b6c231c49fd","keyword":"低温","originalKeyword":"低温"},{"id":"cf4f0fbc-9a2a-4ea7-9bab-552c87c48d5a","keyword":"等离子渗钛","originalKeyword":"等离子渗钛"}],"language":"zh","publisherId":"jsrclxb201501035","title":"ST12钢高能后表面等离子渗钛","volume":"36","year":"2015"},{"abstractinfo":"为研究TA17近α钛合金在高能(HESP)过程中的晶粒细化机制,采用高能对TA17近α钛合金棒材端面进行处理,利用光学显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射仪对变形层组织进行表征,按照变形层中不同深度的组织特征对晶粒细化机制进行探讨.结果表明:在表面形成35 nm左右的等轴纳米晶,在孪晶形成层中粗晶内形成较厚的孪晶薄片,在过渡层中位错滑移使孪晶薄片内生成小角度取向的亚晶,在纳米层中亚晶被转变成随机取向的等轴纳米晶.","authors":[{"authorName":"韩靖","id":"71869bcb-36c4-4872-aabf-a28b6102666a","originalAuthorName":"韩靖"},{"authorName":"盛光敏","id":"e3e4eb26-f379-42c9-819d-780635f6df7b","originalAuthorName":"盛光敏"},{"authorName":"胡国雄","id":"82a58085-2ac0-4246-932f-9cee8febb139","originalAuthorName":"胡国雄"}],"doi":"","fpage":"799","id":"33339cbb-4ce5-41a4-bc80-821ffa680cbf","issue":"5","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"78334972-5d8d-4777-b014-2f0811a05a00","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"c1c01cd1-c37f-4c08-a9d9-c59a54ab3cf4","keyword":"高能","originalKeyword":"高能喷丸"},{"id":"a42a1b1a-1168-4342-8ad7-6bc36fe1a77f","keyword":"纳米晶","originalKeyword":"纳米晶"},{"id":"34405bcb-3ff8-4ea9-b486-514b1c43016c","keyword":"孪生","originalKeyword":"孪生"},{"id":"782205c5-c834-4e06-a6d4-70a6b27961f2","keyword":"位错","originalKeyword":"位错"}],"language":"zh","publisherId":"zgysjsxb200805008","title":"高能TA17近α钛合金晶粒细化机制","volume":"18","year":"2008"}],"totalpage":3541,"totalrecord":35403}