{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"提出碱性NaOH体系分步氧化浸出和盐酸浸出相结合的工艺预处理铅阳极泥,在碱性分步氧化浸出过程中,实现As的氧化溶解和Bi等金属的氧化沉淀,然后用盐酸溶解碱性浸出渣中的Bi,使贵金属富集在盐酸浸出渣中.结果表明:无论碱性直接浸出或酸性直接浸出都不能有效分离铅阳极泥中的有价金属;改变烘烤温度、延长空气氧化时间和改变碱性加压氧化浸出温度都不能实现有价金属的分步分离.当双氧水用量大于0.2以后,碱性浸出过程As的浸出率达到92%以上,碱性浸出渣盐酸浸出时,Bi和Cu的浸出率分别达到99.0%和97.0%,且残余的As不溶解,实现铅阳极泥中有价金属分步分离的目的.","authors":[{"authorName":"刘伟锋","id":"77e22b0c-5bcf-4220-b654-07f25d48f67c","originalAuthorName":"刘伟锋"},{"authorName":"杨天足","id":"4980af87-6f2d-4f5f-915e-dc37e521ce0c","originalAuthorName":"杨天足"},{"authorName":"刘又年","id":"cf78ea99-39ea-43cf-9f1e-7c2a6debd876","originalAuthorName":"刘又年"},{"authorName":"陈霖","id":"eee1b398-3b32-4cf2-9e9e-eaf30af6bd3f","originalAuthorName":"陈霖"},{"authorName":"张杜超","id":"049bdd38-9250-4547-a18e-8697b5cb536c","originalAuthorName":"张杜超"},{"authorName":"唐谟堂","id":"e107d81a-882a-4610-8bce-c3e35446bfad","originalAuthorName":"唐谟堂"}],"doi":"","fpage":"549","id":"0c75d738-d3ef-4e88-8384-1e3174529d6c","issue":"2","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"c8858148-9a17-4998-849f-b6cc5c351022","keyword":"铅阳极泥","originalKeyword":"铅阳极泥"},{"id":"bdb18a91-ef9f-48ba-a4d3-69fb62929b9d","keyword":"碱性氧化浸出","originalKeyword":"碱性氧化浸出"},{"id":"d7109b65-279c-4f2c-896e-7ed0f3bcf8ed","keyword":"盐酸浸出","originalKeyword":"盐酸浸出"},{"id":"15c816a1-52c0-4d72-b6d3-98df7f0f688c","keyword":"NaOH","originalKeyword":"NaOH"}],"language":"zh","publisherId":"zgysjsxb201302037","title":"脱除铅阳极泥中贱金属的预处理工艺选择","volume":"","year":"2013"},{"abstractinfo":"为阐明砷在铅阳极泥碱性加压氧化浸出过程(NaNO3为氧化剂;NaOH为碱性试剂)中的热力学特性,通过热力学计算绘制体系离子质量浓度为0.1 mol/kg,温度为298、373、423和473 K条件下的As?Na?H2O、N?H2O和As?N?Na?H2O系的φ?pH图.结果表明,砷的存在形态与pH值有关.当pH值较低时,砷主要以H3AsO4、24H AsO?、24HAsO?、22H AsO?及As2O3的形式存在;当pH>11.14时,砷主要以34AsO?形式存在,高碱浓度及高温对砷浸出有利.碱性加压氧化浸出实验表明,砷浸出率变化趋势与As?N?Na?H2O系φ?pH图的热力学分析结果一致,在453 K时砷的最佳浸出率为95.85%.","authors":[{"authorName":"何云龙","id":"313f550e-f7ff-40a8-a35e-c5458be08f9e","originalAuthorName":"何云龙"},{"authorName":"徐瑞东","id":"451b92f7-8c4e-4926-8f10-c80fa962d016","originalAuthorName":"徐瑞东"},{"authorName":"何世伟","id":"dde7eadc-70f1-4da9-8329-e22305c92dde","originalAuthorName":"何世伟"},{"authorName":"陈汉森","id":"7de0f113-e29e-4862-97e1-768c8f1e862f","originalAuthorName":"陈汉森"},{"authorName":"李阔","id":"c08e0364-0e45-4721-9359-be55dcb62525","originalAuthorName":"李阔"},{"authorName":"朱云","id":"469585a4-563e-47a5-9f63-0d5665e1ba47","originalAuthorName":"朱云"},{"authorName":"沈庆峰","id":"4e74c8f7-0306-4393-8e08-6dcb91c44802","originalAuthorName":"沈庆峰"}],"doi":"10.1016/S1003-6326(17)60075-X","fpage":"676","id":"f65c913f-db7c-460c-87cc-fa4c342578af","issue":"3","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"3723a517-f1b6-44a5-ab54-ff6818690bdd","keyword":"φ?pH图","originalKeyword":"φ?pH图"},{"id":"a6dc129b-4dbe-4fc4-b375-9df5561609da","keyword":"As?N?Na?H2O系","originalKeyword":"As?N?Na?H2O系"},{"id":"c929a1e8-780b-4f91-8ef1-0fd182e6e104","keyword":"铅阳极泥","originalKeyword":"铅阳极泥"},{"id":"4fdf1e7f-df36-4613-8ac6-1a3f77c44fe9","keyword":"浸出","originalKeyword":"浸出"},{"id":"01519675-de6a-4445-9f5a-6d841949539f","keyword":"脱砷","originalKeyword":"脱砷"}],"language":"zh","publisherId":"zgysjsxb-e201703021","title":"铅阳极泥碱性加压氧化浸出脱砷过程中As?N?Na?H2O系的φ?pH图","volume":"27","year":"2017"},{"abstractinfo":"研究了从低品位铷矿中回收铷的工艺流程,试图提高铷回收率、降低生产成本.将经过焙烧处理的氧化铷熟矿用苛性碱溶液浸出氧化铷,浸出液为铷盐溶液,在浸出过程中研究NaOH浓度、温度、浸出时间、液固比及碱液循环次数对氧化浸出率的影响.研究结果表明:Rb2O浸出率随着碱浓度增加而增大,当碱液浓度达到0.125 mol·L-1时,Rb2O浸出率达到80%以上;温度从20℃升高到80℃时,Rb2O浸出率从62%增加到90%,但温度从40℃升高到80 ℃时,Rb2O浸出率维持在91%左右;随着浸出时间、液固比的增加,Rb2O浸出率也不断增大,当浸出时间超过5 min及液固比大于4时,Rb2O浸出率低于92%;碱液循环浸出熟矿4次以内时,Rb20浸出率不变,大于4次浸出率逐渐下降.在NaOH浓度为0.125 mol·L-1、浸出温度为40℃、液固比为4∶1、浸出时间为5min、碱液循环浸出氧化铷熟矿4次的条件下,氧化浸出率达90%.该工艺为工业化生产提供基础理论依据.","authors":[{"authorName":"杨少华","id":"6ebd7c6a-b323-4b84-82ba-556d3be0bbcd","originalAuthorName":"杨少华"},{"authorName":"谢宝如","id":"eaa694a1-57cf-4b31-a791-b6aee47caa35","originalAuthorName":"谢宝如"},{"authorName":"王君","id":"0d83d276-2d89-4975-a607-d30c571a786b","originalAuthorName":"王君"},{"authorName":"赖晓晖","id":"58c44384-abee-4b1b-800a-716b66350c2d","originalAuthorName":"赖晓晖"},{"authorName":"王浩然","id":"d7e0d85a-3daa-4ba5-a6fc-3cfeea946392","originalAuthorName":"王浩然"},{"authorName":"房孟钊","id":"76f112ff-9687-4f4c-8731-e9733939aebd","originalAuthorName":"房孟钊"}],"doi":"10.13373/j.cnki.cjrm.2015.09.015","fpage":"861","id":"4bcac65a-c0e8-48e1-a5fa-ec956e223a08","issue":"9","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"1c809137-0a2a-43a5-82aa-65b1f4d011e7","keyword":"氧化铷熟矿","originalKeyword":"氧化铷熟矿"},{"id":"b77f3b45-4d9b-4221-a003-fb5943aa1e1a","keyword":"铷盐","originalKeyword":"铷盐"},{"id":"aed45195-2bdf-4027-8288-0992d9b4cdcd","keyword":"碱浸出","originalKeyword":"碱浸出"},{"id":"a169e641-a8fd-479e-bc75-6fb62f7ed518","keyword":"浸出率","originalKeyword":"浸出率"}],"language":"zh","publisherId":"xyjs201509015","title":"氧化铷熟矿的碱浸出","volume":"39","year":"2015"},{"abstractinfo":"研究Me(Ⅱ)-NH4Cl-NH3-H2O(MACA)体系处理兰坪低品位氧化锌矿的浸出过程,提出用循环浸出方法富集浸出液中锌浓度的工艺技术方案.结果表明:循环浸出的优化条件为液固比4:1、常温、搅拌速度300 r/min、浸出时间3 h;通过循环次数分别为14、15及10的3个阶段的循环浸出试验,获得渣计锌浸出率≥69%、浸出液锌浓度≥33 g/L的较好结果.该工艺具有流程简短、能耗低、净化容易、环境友好等优点,对低品位高碱性脉石难选氧化锌矿的开发利用具有重要意义.","authors":[{"authorName":"唐谟堂","id":"c588f8fa-b7cd-4571-9824-dbb32a2a31db","originalAuthorName":"唐谟堂"},{"authorName":"张家靓","id":"dd97ed59-3967-421f-995e-09c1945456d2","originalAuthorName":"张家靓"},{"authorName":"王博","id":"dc9c8294-1ef3-4025-9cc0-3f3383cc6ba5","originalAuthorName":"王博"},{"authorName":"杨声海","id":"c7dadb9a-27c8-458c-892e-c68f27a91186","originalAuthorName":"杨声海"},{"authorName":"何静","id":"f51cf958-e542-4c9c-b05d-301a22961cac","originalAuthorName":"何静"},{"authorName":"唐朝波","id":"063fbeb3-33ae-4f2d-97df-ef2d7fc65569","originalAuthorName":"唐朝波"},{"authorName":"杨建广","id":"c144c708-b9e8-45ca-8257-6d0b81033c72","originalAuthorName":"杨建广"}],"doi":"","fpage":"214","id":"dd73b23d-8b3e-4f2a-b3e3-ca3643b2a5a3","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"7dc812de-67a1-4f29-ac4e-6d4c15a53810","keyword":"锌冶金","originalKeyword":"锌冶金"},{"id":"cb234c53-ade8-4236-ab83-c1a2c7fb1dd1","keyword":"低品位氧化锌矿","originalKeyword":"低品位氧化锌矿"},{"id":"9908e469-b71b-4b87-885b-323dda79cdc0","keyword":"MACA体系","originalKeyword":"MACA体系"},{"id":"5ee50078-7ae5-4357-8b4c-e8c815ee7e9f","keyword":"循环浸出","originalKeyword":"循环浸出"}],"language":"zh","publisherId":"zgysjsxb201101027","title":"低品位氧化锌矿在MACA体系中的循环浸出","volume":"21","year":"2011"},{"abstractinfo":"在100 g钴矿加入39 mL浓硫酸、浸出温度80 ℃、浸出时间2 h、液固比2-1时,采用常规的硫酸浸出,钴浸出率仅为16.86%;当100 g钴矿中加入42.5 mL浓硫酸、在焙烧温度630 ℃、焙烧时间1.5 h的焙烧条件下,采用硫酸化焙烧后硫酸浸出,钴浸出率达到67.48%;在100 g钴矿中加入39 mL浓硫酸和56 mL浓硝酸、浸出温度60 ℃、浸出时间4 h、液固比为3-1时,采用硝酸氧化下硫酸浸出,钴浸出率为96.35%.","authors":[{"authorName":"郑雅杰","id":"55f49d13-3e57-43ed-b51c-8db668a3e3b8","originalAuthorName":"郑雅杰"},{"authorName":"滕浩","id":"9540ed59-f52d-48b0-8188-4dcedc61cc9f","originalAuthorName":"滕浩"},{"authorName":"闫海泉","id":"9c54cdfc-1024-4a50-8d04-0f4eb95bc715","originalAuthorName":"闫海泉"}],"doi":"","fpage":"1418","id":"5c485669-ab69-46f3-a6b9-f7b0e07a738d","issue":"7","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"97d0380f-8068-4c31-a1b5-5ecf37c57d1d","keyword":"高砷钴矿","originalKeyword":"高砷钴矿"},{"id":"a19d7cce-c150-4fe2-9e07-8f133d406052","keyword":"氧化浸出","originalKeyword":"氧化浸出"},{"id":"cb17e9c1-8e8a-426f-8bdc-a7a719f8c247","keyword":"硫酸","originalKeyword":"硫酸"},{"id":"3a1ea23e-9038-4158-ad0e-a3d9cd3313eb","keyword":"硝酸","originalKeyword":"硝酸"}],"language":"zh","publisherId":"zgysjsxb201007027","title":"硝酸氧化浸出难冶炼高砷钴矿","volume":"20","year":"2010"},{"abstractinfo":"研究了紫金山铜矿中主要目的矿物之一的蓝辉铜矿细菌浸出的过程和影响因素, 考察了蓝辉铜矿纯矿物的浸出特性. 实验室条件下细菌浸出蓝辉铜矿纯矿物的适宜参数为: 接种量50%; 培养基中Fe2+氧化量为60%. 20 d浸出周期内蓝辉铜矿浸出率可达80%以上. 通过向纯矿物浸出体系中添加黄铁矿探讨其强化浸出效果. 结果表明: 以1∶2或1∶1重量比添加黄铁矿能明显加快蓝辉铜矿的细菌浸出速率. 通过对蓝辉铜矿和黄铁矿在浸出介质中静电位的测定表明, 添加黄铁矿后能在浸出体系中形成较强的原电池效应, 促进目的矿物的溶解.","authors":[{"authorName":"温建康","id":"331fb4a3-5f33-4d29-b35c-2fe767e06477","originalAuthorName":"温建康"},{"authorName":"阮仁满","id":"fb8ac544-206c-4e74-ba2e-d08edeeee77a","originalAuthorName":"阮仁满"},{"authorName":"周峨","id":"b5887db2-e809-44e5-a01d-9b06deadde11","originalAuthorName":"周峨"},{"authorName":"张明明","id":"e2a10a0d-86e4-45ed-bbee-0f5c660313a2","originalAuthorName":"张明明"},{"authorName":"王淀佐","id":"a1217b91-1dc0-41df-9b6b-6fb02d7f947d","originalAuthorName":"王淀佐"}],"doi":"10.3969/j.issn.0258-7076.2007.06.020","fpage":"818","id":"3e3c03ee-0954-4fb3-add1-2a28ce125024","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"867f8060-8b69-440c-a433-72dbec4b5b84","keyword":"硫化铜矿","originalKeyword":"硫化铜矿"},{"id":"8abfcac9-ea94-40df-9f58-a57beaac1b57","keyword":"细菌浸出","originalKeyword":"细菌浸出"},{"id":"dd091449-93ff-4c7a-b80e-3c38417ee719","keyword":"蓝辉铜矿","originalKeyword":"蓝辉铜矿"},{"id":"f10de66e-e942-47c4-b674-6f0c7d9dfa25","keyword":"紫金山铜矿","originalKeyword":"紫金山铜矿"}],"language":"zh","publisherId":"xyjs200706020","title":"蓝辉铜矿的细菌氧化浸出研究","volume":"31","year":"2007"},{"abstractinfo":"以硝酸镁为氧化剂系统研究了硝酸根存在下红土镍矿在硫酸体系中的高压浸出情况.通过单因素条件实验详细考察了硝酸镁添加量、初始硫酸酸度、反应温度、保温时间和液固比对浸出结果的影响,并得到最优浸出工艺条件:硝酸镁加入量0.06 g·g-1,初始酸度140 g·L-1,反应温度220℃,保温时间60 min,液固比2 ml·g-1.在上述最优工艺条件下进行综合试验,取得了良好的浸出结果,实现了镍、钴和铁的选择性浸出,镍、钴浸出率分别为90.9%和91.7%,而铁浸出率低至2.2%.最后借助X射线衍射(XRD)、反射显微镜及化学物相分析,对新体系下浸出过程机制进行了研究,该体系中浸出过程为溶解—氧化—沉淀机制.添加硝酸根较传统硫酸高压浸出省酸,经计算利用该技术处理11红土矿可节省H2SO4大约160 kg.","authors":[{"authorName":"马保中","id":"97faf2e7-b7f1-4c30-a8cd-4a8522353b6e","originalAuthorName":"马保中"},{"authorName":"杨玮娇","id":"e27a8488-7f63-410a-8fa7-676188183a16","originalAuthorName":"杨玮娇"},{"authorName":"王硕","id":"ee2c6ccf-8459-4fbe-ad87-fe4d657db3e5","originalAuthorName":"王硕"},{"authorName":"杨卜","id":"3fffa197-2467-45fd-80c8-6df3eb35f137","originalAuthorName":"杨卜"},{"authorName":"王成彦","id":"bf0faafb-3d8b-4475-a859-6d611bfa9bce","originalAuthorName":"王成彦"}],"doi":"10.13373/j.cnki.cjrm.2016.07.013","fpage":"715","id":"772789b3-2fcc-48a0-b022-29848badaf3e","issue":"7","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"ad9465ee-bd35-413b-8ad4-7bef6b183389","keyword":"红土矿","originalKeyword":"红土矿"},{"id":"0554bf58-fc79-4d11-973a-f75c44b4762b","keyword":"硝酸镁","originalKeyword":"硝酸镁"},{"id":"2889ac90-8250-4732-896c-ecf7d28ad736","keyword":"硫酸","originalKeyword":"硫酸"},{"id":"59a98fbd-065a-4288-86fe-6bf5878a5a1d","keyword":"混合体系","originalKeyword":"混合体系"},{"id":"cf3cc1fa-c963-4c04-9aa6-f95f4da38855","keyword":"高压浸出","originalKeyword":"高压浸出"}],"language":"zh","publisherId":"xyjs201607013","title":"硝酸根氧化高压硫酸浸出红土镍矿","volume":"40","year":"2016"},{"abstractinfo":"对含砷类型不同的金精矿和单矿物进行细菌氧化-氰化浸出研究,分析毒砂和雄黄对金精矿细菌氧化-氰化浸出效果的影响.结果表明:在细菌氧化过程中,含砷金精矿中的毒砂易被氧化分解,经过192 h的细菌氧化后,脱砷率可达93.10%;而雄黄无法被细菌氧化分解,且影响细菌活性,延长浸矿的停滞期;在氰化浸出过程中,毒砂非常稳定,不参与任何副反应;而雄黄易与CN-及保护碱发生副反应,且产生的沉淀物质会在金粒表面形成薄膜,从而降低氰化浸出效率.","authors":[{"authorName":"崔日成","id":"6f214420-fb45-416d-b17e-09a116659ffe","originalAuthorName":"崔日成"},{"authorName":"杨洪英","id":"7b16e8cc-8e9e-4422-b4df-c3a15718a2e0","originalAuthorName":"杨洪英"},{"authorName":"富瑶","id":"b8868b15-02be-400f-8d93-3db2a76bc957","originalAuthorName":"富瑶"},{"authorName":"陈森","id":"9fae68ef-f284-427c-90c2-756d2d3bae9f","originalAuthorName":"陈森"},{"authorName":"张硕","id":"aaba5d35-64cd-4b1f-b2c2-7db069354004","originalAuthorName":"张硕"}],"doi":"","fpage":"694","id":"72be9ffe-8acc-4f92-a9bc-ca8136f45553","issue":"3","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"bd5be8d4-f444-4a76-ad31-1dd8f5467fcf","keyword":"雄黄","originalKeyword":"雄黄"},{"id":"628703de-8c3a-40d1-a012-7ea31d29bb05","keyword":"毒砂","originalKeyword":"毒砂"},{"id":"8f0ba89c-bd42-4d99-ab1b-0f75661dcb71","keyword":"细菌氧化","originalKeyword":"细菌氧化"},{"id":"5cf1f24d-abd3-4154-b98e-921b6f528606","keyword":"氰化浸出","originalKeyword":"氰化浸出"}],"language":"zh","publisherId":"zgysjsxb201103031","title":"不同含砷类型金矿的细菌氧化-氰化浸出","volume":"21","year":"2011"},{"abstractinfo":"针对低品位铀尾矿因脉石含量高、物相赋存状态复杂而造成的铀浸出率低的问题,提出添加辅助氧化剂破坏脉石结构而实现强化浸出铀的思路.采用单因素实验法对比常规酸浸和3种氧化剂(H2O2、MnO2和Fe3+)强化酸浸对铀浸出率的影响.结果表明:当浸出温度、硫酸浓度和液固比分别为30℃、1 mo1/L和20∶1时,采用常规酸浸6h后铀的浸出率仅为78%,而在相同的浸出条件下,强化酸浸1.5 h铀的浸出率可达到95%.浸出渣的XRD及SEM-EDS分析结果表明,H2O2及MnO2均能破坏脉石晶体结构,减少颗粒团聚,但添加MnO2后生成新的硅酸锰盐晶体,Fe3+不能破坏脉石结构,但其氧化作用在一定程度上能加快铀的浸出.","authors":[{"authorName":"李密","id":"e43a178d-30b2-4acf-a966-68ba34314eb4","originalAuthorName":"李密"},{"authorName":"张彪","id":"88599969-6a6e-4674-8025-d9fa7740fe98","originalAuthorName":"张彪"},{"authorName":"张晓文","id":"685478ed-ea36-4c93-94ac-65403a0a75d5","originalAuthorName":"张晓文"},{"authorName":"黄婧","id":"c3c112e5-0fa8-4676-9f91-c7ec362d6b09","originalAuthorName":"黄婧"},{"authorName":"丁德馨","id":"bf1a81e1-ef52-45af-b7ef-5be97fd95108","originalAuthorName":"丁德馨"},{"authorName":"叶勇军","id":"b491d784-0d82-476c-9d42-b74ab3fb255f","originalAuthorName":"叶勇军"}],"doi":"","fpage":"145","id":"2ed3f743-686b-49e6-983d-a17f3c61c4d0","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"61d58108-9e94-4399-9018-fa7b8b949aad","keyword":"铀尾矿","originalKeyword":"铀尾矿"},{"id":"b90c9bcd-3442-48ea-a673-80e8a5f4fc6b","keyword":"浸出","originalKeyword":"浸出"},{"id":"e0246a1b-205d-4cb8-803f-5cb694b1492a","keyword":"氧化","originalKeyword":"氧化"},{"id":"5f44861f-2cfd-41cb-9d5c-ec31f87b986c","keyword":"脉石","originalKeyword":"脉石"}],"language":"zh","publisherId":"zgysjsxb201701019","title":"从低品位铀尾矿中氧化浸出铀","volume":"27","year":"2017"},{"abstractinfo":"氨法浸出是基于目标金属与氨形成配合离子进入溶液,实现目标金属与部分杂质的分离,因此浸出过程具有选择性.对钴、铜与氨的配合机制及亚硫酸钠还原性能的影响因素进行了分析.结果表明:提高cNH3/cMe有利于形成稳定性高的钴、铜氨配合离子;降低cSO42 -/cSO32-,提高体系pH可降低还原剂还原电位.实验过程采用加压氨浸工艺,在NH3-NH4+ -H2O体系中浸出钴铜氧化矿中的钴和铜,研究了总氨浓度、氨铵比、液固比、浸出温度、还原剂用量对氧化矿中钴和铜浸出率的影响.结果表明,在总氨浓度7 mol·L-1、氨铵比2∶1、液固比6∶1、浸出温度100℃、还原剂亚硫酸钠用量为三价钴含量(摩尔比)4倍的最优条件下,钴浸出率可达到95.2%,铜浸出率可达到95.8%.浸出液后续处理工艺简单,氨及铵盐可实现闭路循环,对环境友好.","authors":[{"authorName":"刘建华","id":"065352ea-8bfa-4646-9210-e96f21564804","originalAuthorName":"刘建华"},{"authorName":"张焕然","id":"426eecec-695c-42d0-b51c-e6134313f608","originalAuthorName":"张焕然"},{"authorName":"王瑞祥","id":"fdd6f782-6472-454e-9bcc-219732a76b76","originalAuthorName":"王瑞祥"},{"authorName":"黄涛","id":"6a96dd07-697a-4a1c-a50b-2c503b5a80bd","originalAuthorName":"黄涛"}],"doi":"10.3969/j.issn.0258-7076.2012.01.026","fpage":"149","id":"a8bc662f-6a0c-41f9-837c-6780eee399b9","issue":"1","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"d7593393-7150-4471-a419-f1078ecbb4cd","keyword":"NH3-NH4+ -H2O体系","originalKeyword":"NH3-NH4+ -H2O体系"},{"id":"454fb7dd-1419-411f-bd64-74ec79c46626","keyword":"钴铜氧化矿","originalKeyword":"钴铜氧化矿"},{"id":"7d5a7d74-c876-4490-8ece-0d9e2c520977","keyword":"浸出率","originalKeyword":"浸出率"}],"language":"zh","publisherId":"xyjs201201026","title":"氨法加压浸出钴铜氧化矿工艺","volume":"","year":"2012"}],"totalpage":3176,"totalrecord":31759}