{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以连铸坯热送热装热过程传热数学模型对热送热装工艺中铸坯温度变化模拟结果为基础,建立了传搁过程中铸坯温度变化在线实时预报的数学模型.在线模型能实时预报各种工况下铸坯的温度变化.","authors":[{"authorName":"刘铁树","id":"552dd511-90ff-476b-a2fd-ccefb946180e","originalAuthorName":"刘铁树"},{"authorName":"","id":"30e3cf42-4172-469f-979e-a055166eaa8b","originalAuthorName":"张正严"},{"authorName":"陈宗海","id":"e06a89a8-7f95-42c4-a830-7c33b2bb9535","originalAuthorName":"陈宗海"},{"authorName":"刘国柱","id":"93e00d80-8df1-48a4-8dfe-0ede1ca93fd9","originalAuthorName":"刘国柱"},{"authorName":"向顺华","id":"f940c511-79b3-49fd-9976-b0dcadf31166","originalAuthorName":"向顺华"},{"authorName":"温治","id":"f46d16eb-eb06-404a-84d7-1ec582a0895e","originalAuthorName":"温治"},{"authorName":"欣欣","id":"c7cfb427-f35c-4738-a628-9a3906469397","originalAuthorName":"张欣欣"},{"authorName":"高仲龙","id":"800fcea7-771b-42dc-98a4-07dd10b3a79e","originalAuthorName":"高仲龙"}],"doi":"","fpage":"0","id":"ed860b6a-5524-461a-baf5-84974cd7d7f9","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"3ade8ef0-4b4a-4b60-be1a-319c5b89d962","keyword":"连铸坯","originalKeyword":"连铸坯"},{"id":"6979aeee-8c76-44f8-9318-32b5cc4c9b14","keyword":"热送热装","originalKeyword":"热送热装"},{"id":"5dbb6f35-a657-4fa1-aa5a-7fd531ab2d42","keyword":"在线数学模型","originalKeyword":"在线数学模型"}],"language":"zh","publisherId":"gt199808006","title":"热送热装工艺中铸坯温度的在线预报模型","volume":"33","year":"1998"},{"abstractinfo":"介绍了封涂层的特点、测试方法、分类以及国内外可磨耗和耐磨封涂层的应用情况,对部分封涂层材料的发展过程及涂层的特殊制备工艺进行了阐述.评述了封涂层的研究现状及在航空工业的发展前景.","authors":[{"authorName":"朱佳","id":"dbb27f3f-c07d-4d97-bb59-e8f64c64b960","originalAuthorName":"朱佳"},{"authorName":"冀晓鹃","id":"5b2932f9-9c36-4b04-aba1-3fc58adb20d4","originalAuthorName":"冀晓鹃"},{"authorName":"揭晓武","id":"6c5cad4b-0681-43d8-984a-ce85b748cd2b","originalAuthorName":"揭晓武"},{"authorName":"史明","id":"22ee0667-c6a0-4e17-ae35-a9e67abb2e12","originalAuthorName":"史明"}],"doi":"10.3969/j.issn.1003-1545.2008.04.019","fpage":"78","id":"f201ecc3-dbb0-4bad-a99e-0c348489325d","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"cd818646-cd5f-4608-a9ab-8b39545b7303","keyword":"封涂层","originalKeyword":"封严涂层"},{"id":"b11c8550-6812-4502-a168-9900a3c08090","keyword":"可磨耗","originalKeyword":"可磨耗"},{"id":"d432515b-706f-4909-b5df-f7d41e3f4340","keyword":"耐磨","originalKeyword":"耐磨"}],"language":"zh","publisherId":"clkfyyy200804019","title":"封涂层材料及应用","volume":"23","year":"2008"},{"abstractinfo":"本文通过构建由一级动静叶组成的外流影响下的轮缘密封问题的实验和数值模型,针对燃气轮机透平转静轮盘间隙的封与入侵问题开展了研究.其中第一部分主要关注燃气入侵的主要影响因素,入侵气体在腔室内部的分布规律和最小封流量.结果表明:静叶尾缘的压力分布是造成燃气入侵的主要原因,即在主流的压力大于密封腔室内压力的区域会出现燃气侵入腔室,造成局部温度过高;主流压力小于腔室内部的压力区域,密封气体能够较好的封转静间隙.入侵气体和封气体的掺混主要发生在腔内高半径处并在高速旋转的动盘引发的夹带作用下深入腔室内部低半径处.因此在轮缘密封的结构设计中需要全面的考虑这些因素的影响.","authors":[{"authorName":"吴康","id":"4a43a20e-5df8-4e0e-a97c-599eeecb27b9","originalAuthorName":"吴康"},{"authorName":"任静","id":"8380e087-8908-41ee-93b4-6b9aabf712e6","originalAuthorName":"任静"},{"authorName":"蒋洪德","id":"42477e7c-e3c0-4cd0-9ffb-676d4dcb521e","originalAuthorName":"蒋洪德"},{"authorName":"","id":"5d3b4fd9-3f45-418a-a9d8-f41f7bae8131","originalAuthorName":""}],"doi":"","fpage":"873","id":"9731745a-1800-4015-98b8-b66c7b6e998d","issue":"5","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"df0142dd-131e-43a2-bcc1-919bead0013d","keyword":"整级透平","originalKeyword":"整级透平"},{"id":"e55b7cec-8ca5-462e-b127-7fddf51084d4","keyword":"转静轮缘","originalKeyword":"转静轮缘"},{"id":"8987037b-e666-4c76-8b81-386c22ba0123","keyword":"封与入侵","originalKeyword":"封严与入侵"},{"id":"7192b00b-b626-45fc-b344-6dbe5422e7a5","keyword":"动盘夹带效应","originalKeyword":"动盘夹带效应"}],"language":"zh","publisherId":"gcrwlxb201405011","title":"整级透平中转静轮缘封问题研究PartⅠ:封与入侵","volume":"35","year":"2014"},{"abstractinfo":"本文通过构建由一级动静叶组成的外流影响下的轮缘密封问题的实验和数值模型,针对燃气轮机透平转静轮盘间隙的封与入侵问题开展了研究.其中第二部分主要关注不同封结构的特性.结果表明:复杂的封结构能够避免主流和腔室内部气体的直接接触,增大主流入侵的沿程阻力和削弱主流的切向速度分量的影响.在本文的实验条件下,径向封所需要的最小密封流量相较于轴向封能够减少50%以上.","authors":[{"authorName":"吴康","id":"98e9e190-3bba-4b8d-b435-762909007fb2","originalAuthorName":"吴康"},{"authorName":"任静","id":"b5b49cde-86c3-4598-a8d5-afee3edc8f39","originalAuthorName":"任静"},{"authorName":"蒋洪德","id":"cb63f6ad-c5e3-4596-b820-f4b618314067","originalAuthorName":"蒋洪德"}],"doi":"","fpage":"496","id":"de189c43-62f5-4d50-9de8-1681bd558f09","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"a9f3a100-d033-4105-b177-b254e4a65561","keyword":"转静轮缘","originalKeyword":"转静轮缘"},{"id":"aa57fd8c-13f5-4964-ad0a-8dba8cd41f1c","keyword":"轴向封","originalKeyword":"轴向封严"},{"id":"c0e025bb-c114-45b6-a48a-1a5f9ca6d319","keyword":"径向封","originalKeyword":"径向封严"},{"id":"3dea3f0c-e748-494f-8a0b-f9a0086f3db0","keyword":"双封结构","originalKeyword":"双封严结构"}],"language":"zh","publisherId":"gcrwlxb201503008","title":"整级透平中转静轮缘封问题研究Part Ⅱ:不同封结构的特性","volume":"36","year":"2015"},{"abstractinfo":"在涡轮转静叶片排之间喷入冷气可以阻止高温燃气进入盘腔,但是冷气与主流的掺混损失对涡轮气动性能不利.本文采用数值计算的方法,研究了转静叶片排之间封腔轴向位置和轴向间隙的变化对涡轮性能和端区流动的影响.结果表明,封出流与主流的剪切作用形成了诱导涡,诱导涡随后发展成为通道涡并占据了端区二次流的主导地位.封腔轴向位置和轴向间隙的改变使等熵效率和封效率产生了相反的变化,因此在设计时要兼顾气动性能和冷却要求进行综合考虑.","authors":[{"authorName":"贾惟","id":"9048a19f-7266-409a-bfea-96262457374d","originalAuthorName":"贾惟"},{"authorName":"刘火星","id":"a4f29910-ee3b-4aef-859e-de97e0813a9f","originalAuthorName":"刘火星"}],"doi":"","fpage":"492","id":"93b47ff3-c201-41f1-b8a0-8c14a7afee03","issue":"3","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"e4ba0bdd-6779-4b05-bf0b-c42a678bdd1b","keyword":"封腔","originalKeyword":"封严腔"},{"id":"76574dba-61f1-40d3-9050-cc3c6cbf1147","keyword":"轴向位置","originalKeyword":"轴向位置"},{"id":"701ac2e1-b960-43f1-af40-190b729c7bec","keyword":"轴向间隙","originalKeyword":"轴向间隙"},{"id":"2b4a6468-2f59-452b-8c96-0b2c935740dd","keyword":"通道涡","originalKeyword":"通道涡"},{"id":"8d1ed8fe-e350-465e-959a-a8008fd158e6","keyword":"涡轮性能","originalKeyword":"涡轮性能"}],"language":"zh","publisherId":"gcrwlxb201503007","title":"封腔几何特征对涡轮性能的影响","volume":"36","year":"2015"},{"abstractinfo":"为了进一步提高封涂层与基体材料之间的附着性能, 对梯度封涂层与1Cr18Ni9Ti不锈钢之间的附着性能进行了探讨。采用拉开法测试梯度封涂层与1Cr18Ni9Ti不锈钢之间的附着强度,并用冷热循环法测试梯度封涂层的耐冷热循环性能,与普通封涂层的附着强度及耐冷热循环性能进行比较,结果发现:梯度封涂层的附着强度比普通封涂层的附着强度有提高,而且梯度封涂层的耐冷热循环性能明显优于普通封涂层。","authors":[{"authorName":"朱立群","id":"a013d7f1-c08b-4601-94f2-74f78368de8c","originalAuthorName":"朱立群"},{"authorName":"刘孟兰","id":"276152a5-8377-41a0-8f78-0df439f7f359","originalAuthorName":"刘孟兰"},{"authorName":"李雪源","id":"41ef41b7-c3c3-48e3-8813-f12b780c93d2","originalAuthorName":"李雪源"},{"authorName":"王建华","id":"170bc30a-2155-42a2-af23-2f65a8234725","originalAuthorName":"王建华"}],"doi":"10.3969/j.issn.1001-4381.2001.02.010","fpage":"34","id":"8a8ae67d-36d2-4227-8383-86747d45b9ac","issue":"2","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"963381b3-7483-409a-a0d2-f45426554896","keyword":"飞机发动机","originalKeyword":"飞机发动机"},{"id":"cbdd7268-07e8-41d2-b7cf-5a11479bb7fb","keyword":"梯度封涂层","originalKeyword":"梯度封严涂层"},{"id":"6544aaec-7039-471b-8933-933d04efbaea","keyword":"剥离","originalKeyword":"剥离"}],"language":"zh","publisherId":"clgc200102010","title":"飞机发动机用梯度封涂层的研究","volume":"","year":"2001"},{"abstractinfo":"钛合金材料与不同材料相互连接,并处于富含氯离子的电解质溶液中,有可能使得材料发生电偶腐蚀而遭到破坏.采用极化曲线的方法分别研究了NiAl涂层、TA15的电化学行为.结果表明NiAl涂层的腐蚀电位较TA15的低,二者相差约30 mV,NiAl涂层腐蚀电流为1.718×10-4A,TA15腐蚀电流为1.170×10-5 A.研究了NiA1封涂层和TA15钛合金之间在5% NaCl水溶液中的电偶腐蚀行为.测试了NiAl-TA15电偶对的电偶电流-时间曲线,并通过计算出的平均电偶电流密度,评价了钛合金和NiAl封涂层的电偶腐蚀敏感性.结果表明,TAl5钛合金和NiAl封涂层之间的电位差很小,电偶腐蚀倾向很小,电偶电流密度为0.0253 μA·cm-2.电偶腐蚀过程中,腐蚀电位较低的NiAl涂层作为电偶对的阳极发生腐蚀,钛合金作为阴极得到保护.电偶腐蚀后电偶对的阳极、阴极的自腐蚀电位均升高,阳极电位从-347 mV移到- 242 mV,阴极电位从-323 mV移到-210 mV;电偶电位为-300 mV.NiAl涂层含有较多孔洞,可以作为腐蚀介质的渗透通道,在含有Cl-并且有溶解氧存在的腐蚀性介质中,容易导致腐蚀的发生与发展.","authors":[{"authorName":"赵丹","id":"c6eb9c7c-874c-4c49-8116-48aa4ff13164","originalAuthorName":"赵丹"},{"authorName":"孙杰","id":"42fe8d9e-aaca-442e-8ea3-4ce453680ee6","originalAuthorName":"孙杰"},{"authorName":"赵忠兴","id":"b1d519fe-6f25-4686-a955-b66681f67618","originalAuthorName":"赵忠兴"}],"doi":"10.3969/j.issn.0258-7076.2012.02.010","fpage":"224","id":"76635a01-84a3-4c79-87ce-7c8ddff912c6","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"a8b2d495-a291-444e-897a-e04e155020a1","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"4e71330f-e7cf-4bd1-9270-2d127d421d85","keyword":"NiAl封涂层","originalKeyword":"NiAl封严涂层"},{"id":"a37ee5f5-b851-4562-899b-985defd535a2","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"}],"language":"zh","publisherId":"xyjs201202010","title":"钛合金与NiAl封涂层的电偶腐蚀行为研究","volume":"36","year":"2012"},{"abstractinfo":"在对轧制时钢管的温降原因进行分析的基础上,给出一种定减温降计算模型,该模型考虑了辐射、接触传导、内部传导对温度的影响.通过对轧制实验测定得到钢管的温降数据与此模型实例计算的结果进行对比分析,表明该模型比较准确,能够满足生产实际的要求,可用于自动控制系统中定减温降的计算,从而为控制系统比较准确地对轧机进行设定及调整提供依据.","authors":[{"authorName":"付国忠","id":"2df6a851-8f47-4b56-8f72-ddb7bbbcfe8c","originalAuthorName":"付国忠"},{"authorName":"刘建平","id":"7bbce9ac-9a32-45eb-96fd-189eee9a7fcf","originalAuthorName":"刘建平"},{"authorName":"赵晓峰","id":"447ac541-0f77-4dc8-b74d-90d05019a5dc","originalAuthorName":"赵晓峰"},{"authorName":"刘建明","id":"dab886da-88c3-485b-acd8-36bdef7ca181","originalAuthorName":"刘建明"},{"authorName":"吕庆功","id":"ca75c975-aa2d-40d9-a1bc-e6c2a6290dd3","originalAuthorName":"吕庆功"},{"authorName":"彭龙洲","id":"191fb78f-9fa7-4ff8-bd3d-f5d577b2254b","originalAuthorName":"彭龙洲"}],"doi":"","fpage":"51","id":"f9f1b624-57cd-4daa-8c3b-87273c5da7af","issue":"12","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"86dbadc0-1405-4493-8908-e33b69ac127a","keyword":"定减","originalKeyword":"定张减"},{"id":"9e7152eb-09a1-44ea-a2de-6bbe76d243e5","keyword":"温降","originalKeyword":"温降"},{"id":"5b41b920-ede8-4551-8e68-3e12ea48cca0","keyword":"模型","originalKeyword":"模型"}],"language":"zh","publisherId":"gt200412013","title":"定减温降计算模型","volume":"39","year":"2004"},{"abstractinfo":"采用空气等离子喷涂工艺制备了NiAl/AlBN封涂层.研究了NiAl/AlBN涂层在5%(质量分数)NaCl溶液中的电偶腐蚀行为.结合极化曲线、开路电位和微观形貌(SEM)观察,对封涂层的腐蚀机理进行了探讨.通过计算出的平均电偶电流密度,评价了NiAl/AlBN封涂层的电偶腐蚀敏感性.结果表明,AlBN涂层的腐蚀电位较NiAl涂层低,两者相差约70mV,电偶腐蚀过程中,腐蚀电位较低的AlBN涂层作为电偶对的阳极发生腐蚀,NiAl涂层作为阴极得到保护.NiAl/AlBN涂层的电偶电流密度为3.5331μA/cm2.电偶腐蚀后,电偶对的阳极、阴极的自腐蚀电位均降低了,阳极电位从-808mV负移到-883mV,阴极电位从-740mV负移到一800mV;电偶电位为-814mV.随着腐蚀时间的延长,AlBN涂层的防护性能逐渐减弱.","authors":[{"authorName":"孙杰","id":"fa9c7288-0c05-4db0-9a06-6ece1bf56d4b","originalAuthorName":"孙杰"},{"authorName":"石超","id":"b59968d3-b926-4f8e-9ae0-962fa1aa8762","originalAuthorName":"石超"},{"authorName":"赵丹","id":"8b5303c9-1f7e-4d86-8e84-4691c6fc2f1b","originalAuthorName":"赵丹"}],"doi":"10.11868/j.issn.1001-4381.2015.11.008","fpage":"44","id":"2f083dd2-5d7f-4a5d-ae6e-bb85dd4f6b0c","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"7e17f6c4-e0a1-4d74-8f2e-9e08465b79d9","keyword":"AlBN封涂层","originalKeyword":"AlBN封严涂层"},{"id":"66efb0aa-19f1-4676-89f4-fc1f6c847b0a","keyword":"NiAl封涂层","originalKeyword":"NiAl封严涂层"},{"id":"4559d593-32e2-4233-bf18-7707dce0fb51","keyword":"电偶腐蚀","originalKeyword":"电偶腐蚀"}],"language":"zh","publisherId":"clgc201511008","title":"NiAl/AlBN封涂层的电偶腐蚀行为","volume":"43","year":"2015"},{"abstractinfo":"综述了国内外封涂层的研究现状,介绍了航空发动机封涂层的结构和应用特点,重点讨论了可磨耗封涂层性能评价和技术研究现状.比较了各种涂层材料、评价方法的优势与不足,指出了可磨耗封涂层的应用潜力及研究发展方向.提出了我国在可磨耗封涂层技术研究及性能评价方面今后的发展方向,即涂层制备方法、结构研究、高温涂层研究和仿真技术等.","authors":[{"authorName":"俊红","id":"87c584c8-1fe0-4218-99b7-a5f9a9ebd742","originalAuthorName":"张俊红"},{"authorName":"鲁鑫","id":"671f73a3-0d9d-47f5-8680-3942975df623","originalAuthorName":"鲁鑫"},{"authorName":"何振鹏","id":"d87963de-ad57-4e6f-8b9f-0bf70e7fbc6a","originalAuthorName":"何振鹏"},{"authorName":"王志平","id":"f5e6827a-d9c8-4838-a7c3-bbd492c9a8fc","originalAuthorName":"王志平"}],"doi":"10.11868/j.issn.1001-4381.2016.04.016","fpage":"94","id":"a9b7a81f-6897-4c13-b91a-d3ce6786d2b7","issue":"4","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"b8b16f3e-5f70-48eb-bb2d-f92a2e3ede07","keyword":"航空发动机","originalKeyword":"航空发动机"},{"id":"edc39662-49d0-4ccf-a4cb-b9963a44a6e1","keyword":"封涂层","originalKeyword":"封严涂层"},{"id":"b76d0738-9e4d-4aab-ad69-b6fd6d51c69f","keyword":"性能评价","originalKeyword":"性能评价"}],"language":"zh","publisherId":"clgc201604016","title":"航空发动机可磨耗封涂层技术研究及性能评价","volume":"44","year":"2016"}],"totalpage":296,"totalrecord":2960}