{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"某油田地面集输管线腐蚀相当严重,事故频发,管线材质主要为20钢.为弄清腐蚀的原因,对作业区处理站内的各主要部位开展了腐蚀监测,在实验室进行了模拟试验,采用X射线衍射(XPJ))、扫描电镜(SEM)、能谱(EDS)等分析手段对腐蚀产物膜进行了分析.结果表明,CO2环境下高浓度的氯离子及高矿化度的地层水是腐蚀穿孔事件频发的主要原因.此外,管线材质耐蚀性能较差也是重要原因之一.","authors":[{"authorName":"蔡锐","id":"52a3f2ce-2dfe-488c-8e59-221ab8c941c7","originalAuthorName":"蔡锐"},{"authorName":"田伟","id":"aa1df252-f252-4777-ac54-33c49699a639","originalAuthorName":"田伟"},{"authorName":"李发根","id":"f3cfd25b-d91e-4e42-8fad-8c3338a509c5","originalAuthorName":"李发根"},{"authorName":"朱世东","id":"57e47195-a451-4b11-a654-138fc1361d04","originalAuthorName":"朱世东"},{"authorName":"林冠发","id":"0e1dee42-0475-4cc5-acae-a506b4ea1fa1","originalAuthorName":"林冠发"}],"doi":"","fpage":"140","id":"f2a12f6f-04a0-47f1-9be0-e34a9f1794f6","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"88b601ef-6351-4804-926e-03ae0b9b7fee","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"dfa1cc7f-3f6a-4d68-bafc-b9b849cc2b6f","keyword":"监测","originalKeyword":"监测"},{"id":"8143238b-2a7c-4287-9b30-c9cc3bc79c05","keyword":"模拟","originalKeyword":"模拟"},{"id":"8f626e70-6c04-4494-aaed-19ab3ed4f8de","keyword":"高矿化度","originalKeyword":"高矿化度"},{"id":"e96de909-9c71-443a-8081-726c8df0b2a3","keyword":"氯离子","originalKeyword":"氯离子"}],"language":"zh","publisherId":"fsyfh201102018","title":"某油田地面管线腐蚀原因分析","volume":"32","year":"2011"},{"abstractinfo":"通过断口分析、无损检测、力学试验和金相分析等手段研究了西部某油田处理站外输气弯管爆裂的原因.结果表明:弯管外弧侧和断口处的显微组织全部为马氏体,导致该处抗拉强度和硬度大幅升高,表现出极大的脆性;在服役过程中,弯管外弧侧的微裂纹一旦扩展,马氏体相即表现出脆性开裂.","authors":[{"authorName":"袁军涛","id":"8656efd4-170f-485d-8f0f-a2017e7e527a","originalAuthorName":"袁军涛"},{"authorName":"林冠发","id":"c576a567-be56-4a9a-a48a-a6d78283022f","originalAuthorName":"林冠发"},{"authorName":"熊新民","id":"cf3eadef-ad8b-4d42-8efb-b478445f97dd","originalAuthorName":"熊新民"},{"authorName":"王应全","id":"2f08e1b8-1d39-42b6-9bf2-a951668b0e92","originalAuthorName":"王应全"},{"authorName":"成福田","id":"81adb202-8514-40c3-a76c-17be7900306a","originalAuthorName":"成福田"},{"authorName":"宋恩鹏","id":"5fe41b2c-b7d4-4cf5-83cb-5b46c8f48d05","originalAuthorName":"宋恩鹏"},{"authorName":"石鑫","id":"d7fc3a8a-4f31-478d-95c3-41dcdef4b22e","originalAuthorName":"石鑫"},{"authorName":"巴特","id":"9d79f394-ef17-4461-9a13-9d84d65d684b","originalAuthorName":"巴特"},{"authorName":"甘小平","id":"63763c13-cf68-47aa-b96f-88492b815a0d","originalAuthorName":"甘小平"}],"doi":"10.11973/fsyfh-201602019","fpage":"175","id":"5394259b-d04b-4e28-bc5a-84fa91ec3698","issue":"2","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"46bffcb0-174b-423c-a4d2-cc25e8084701","keyword":"弯管","originalKeyword":"弯管"},{"id":"f4fef0da-219e-417f-99ad-4c36cc79a058","keyword":"爆裂","originalKeyword":"爆裂"},{"id":"7601d19e-3b4e-4527-af24-ece69bcd061f","keyword":"断口","originalKeyword":"断口"},{"id":"24e3fdc6-0251-4c36-9879-40b3e321fe80","keyword":"马氏体","originalKeyword":"马氏体"}],"language":"zh","publisherId":"fsyfh201602019","title":"西部某油田处理站外输气弯管爆裂原因分析","volume":"37","year":"2016"},{"abstractinfo":"采用化学成分分析、金相显微镜、扫描电子显微镜、X射线能谱分析仪和电化学方法等手段对西部某油田油管腐蚀失效件进行了检测分析.结果表明,井下油管管体外壁发生严重点蚀主要因素是酸化过程残酸反排阶段的残酸液和地层水中的高浓度氯离子,同时CO2和H2S也促进了腐蚀发生.油管管体相对于结箍发生了更严重的点蚀,主要是因为油管管体和结箍在材质、金相组织以及耐蚀性上均存在差异.","authors":[{"authorName":"付安庆","id":"0eec0958-8708-441a-b15c-76a2ed834fb5","originalAuthorName":"付安庆"},{"authorName":"耿丽媛","id":"ec5e8569-60b7-4a85-b683-d696c327b8b2","originalAuthorName":"耿丽媛"},{"authorName":"李广","id":"d212fec8-321c-4851-a948-ced956f53164","originalAuthorName":"李广"},{"authorName":"蔡锐","id":"47416112-e2a7-4943-b7a5-2551bff1ee98","originalAuthorName":"蔡锐"},{"authorName":"李广山","id":"1e4b052e-4b2c-446e-9f39-1fbfd6247518","originalAuthorName":"李广山"},{"authorName":"林冠发","id":"4f36b8ac-d938-472a-92ca-66ecd6b572cf","originalAuthorName":"林冠发"},{"authorName":"白真权","id":"968bc073-545f-496a-9855-3e12efd83440","originalAuthorName":"白真权"}],"doi":"","fpage":"645","id":"0e2b8cab-9b76-49d2-a5c7-1015e3d6fa47","issue":"7","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"dcae3f20-32fa-4cf3-9c30-0d7792a7140a","keyword":"油管管体","originalKeyword":"油管管体"},{"id":"c8776988-2d12-4032-87fa-355dfad024c7","keyword":"油管接箍","originalKeyword":"油管接箍"},{"id":"a6af0e07-1bef-4346-9dee-8c999336a85c","keyword":"点蚀","originalKeyword":"点蚀"},{"id":"bfbedda5-127f-40ba-905f-d5eddf914497","keyword":"酸化","originalKeyword":"酸化"},{"id":"ddb80650-62c1-4979-aeb8-f37e825c4d41","keyword":"失效分析","originalKeyword":"失效分析"}],"language":"zh","publisherId":"fsyfh201307026","title":"西部油田某井油管腐蚀失效分析","volume":"34","year":"2013"},{"abstractinfo":"针对某高产气井单井管线的计量阀发生刺漏,进行了现场失效情况和相关生产参数的调研,并进行了金相组织、能谱和化学成分分析.结果表明,阀体铸铁的金相组织和化学成分符合标准要求,内表面镀层、密封环和压盖材质化学成分也符合标准要求.计量阀本体和上游存在严重的冲刷腐蚀;计量阀阀球压盖上的环形沟槽的腐蚀是冲刷腐蚀与缝隙腐蚀的结果,这与压盖留有一环形缝隙结构缺陷有关.压盖与球体间暴露出来的铸铁是形成腐蚀坑槽的起因,但腐蚀沟槽的最终形成则是由冲蚀、气蚀和电偶腐蚀共同作用的结果.阀室内表面的腐蚀沟槽起因在于阀室内表面粗糙不均匀而受到冲蚀和气蚀作用,而后由冲蚀、气蚀和电偶腐蚀共同作用.","authors":[{"authorName":"李循迹","id":"c4202a8b-b588-4024-bf7e-a32a0d95be0e","originalAuthorName":"李循迹"},{"authorName":"李先明","id":"d3e6bdc4-d439-4bf4-8811-3b7110933c91","originalAuthorName":"李先明"},{"authorName":"陈东风","id":"02e5a81f-b4d2-4db1-a58c-009b61d02fb9","originalAuthorName":"陈东风"},{"authorName":"王福善","id":"a3858813-80a4-4455-8d1b-39338228ba24","originalAuthorName":"王福善"},{"authorName":"常泽亮","id":"4d45575a-b282-4dac-9bdc-451077ee74e3","originalAuthorName":"常泽亮"},{"authorName":"何银达","id":"628e03a1-4cd6-463d-805a-d528ab564e15","originalAuthorName":"何银达"},{"authorName":"林冠发","id":"26821761-0485-4b05-a33c-2ec1616c6f70","originalAuthorName":"林冠发"}],"doi":"","fpage":"751","id":"144d3bf5-a68c-4453-be59-02a4a586f530","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"1c4052ed-7799-494a-ae2e-8c6cb31452da","keyword":"计量阀","originalKeyword":"计量阀"},{"id":"4c7a597a-1189-4bcd-9f47-2a66417747a3","keyword":"剌漏","originalKeyword":"剌漏"},{"id":"09801872-9095-416a-9786-adc04a95db33","keyword":"地面管线","originalKeyword":"地面管线"},{"id":"bfb9d8e6-b0a7-4217-90cc-3521337925f5","keyword":"腐蚀","originalKeyword":"腐蚀"},{"id":"95c7dc9a-32ab-476f-b695-14d8f515a885","keyword":"气井","originalKeyword":"气井"}],"language":"zh","publisherId":"fsyfh201308025","title":"某气井井口管线计量阀刺漏原因","volume":"34","year":"2013"},{"abstractinfo":"利用动静态高温高压釜装置,以某油田为应用背景,采用扫描电镜(SEM)和X射线衍射(XRD)技术探讨环境介质因素Ca2+、Mg2+对油管钢N80腐蚀行为的影响规律,试验结果显示,N80钢在CO2/H2S且高矿化度的环境下的腐蚀属于极严重腐蚀,在其他条件保持相同的情况下,随着介质中的Ca2+,Mg2+离子浓度的增大,N80钢的平均腐蚀速率呈先降低后增大趋势;腐蚀产物膜厚不断增大,内应力增大,导致膜层脱落引发点蚀.","authors":[{"authorName":"朱世东","id":"598ea644-2246-4817-882a-d66a88c74cd5","originalAuthorName":"朱世东"},{"authorName":"白真权","id":"02b8fdd9-b3b2-4f79-aa01-9bd997904ce8","originalAuthorName":"白真权"},{"authorName":"刘会","id":"7a5327d4-8c0a-457a-95ac-c1dc0e108fcd","originalAuthorName":"刘会"},{"authorName":"林冠发","id":"bee22fca-8cd3-4d7d-8767-e4196cee66a1","originalAuthorName":"林冠发"}],"doi":"","fpage":"724","id":"211fc380-62d1-4358-a108-007be9e3bb94","issue":"12","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"91128dd8-c6f6-4927-9e6a-d4593f751495","keyword":"N80钢","originalKeyword":"N80钢"},{"id":"4ba6334f-eef3-40fa-8599-7f0fc712cc60","keyword":"CO2/H2S介质","originalKeyword":"CO2/H2S介质"},{"id":"3eede3fa-e483-4e36-8bf9-a30646863aa3","keyword":"矿化","originalKeyword":"矿化"},{"id":"eda2aaa7-535d-4ddf-b007-8ac7ee5a9ea5","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"}],"language":"zh","publisherId":"fsyfh200812003","title":"Ca2+、Mg2+对N80钢腐蚀速率的影响","volume":"29","year":"2008"},{"abstractinfo":"根据发生点腐蚀的油气管线基体有许多点蚀坑的特点,通过计算机产生随机数确定点蚀坑的位置,用小钻头打孔的方法模拟X60管线钢基体的多孔特征进行拉伸试验,测得其弹性模量、屈服强度和抗拉强度,并将理论计算值与前二者进行比较和修正,给出了多孔钢材的抗拉强度与孔隙率的函数关系.结果表明,多孔钢材弹性模量的实测值随孔隙率的变化与理论预测结果较为吻合;钢材实测屈服强度也随着孔隙率的增加而减少,但在较高孔隙率时其减少趋势变缓;衰减速率的实测值略大于理论预测值;实测抗拉强度随孔隙率的变化曲线与屈服强度相似,但对孔隙率更敏感.","authors":[{"authorName":"林冠发","id":"e8b02c8f-b3ba-468a-8376-add4751d5d28","originalAuthorName":"林冠发"},{"authorName":"白真权","id":"84711f40-f206-4a18-aa06-a88f9532e82e","originalAuthorName":"白真权"},{"authorName":"舒欣","id":"49de34d7-8374-4e6a-b4d2-2bf67f811c60","originalAuthorName":"舒欣"},{"authorName":"李党国","id":"2133d141-0ef2-4e21-9286-2ed86db16fac","originalAuthorName":"李党国"},{"authorName":"赵新伟","id":"9342a076-93db-46dd-94b5-30c53c81e034","originalAuthorName":"赵新伟"},{"authorName":"郑茂盛","id":"854f3a79-7517-4d9f-9cb0-0c57806addcf","originalAuthorName":"郑茂盛"}],"doi":"","fpage":"63","id":"2717bec6-811a-41b4-af75-5bf2a8c71272","issue":"6","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6a94b04c-0698-46bb-b31a-8499535b6a5d","keyword":"油气管线","originalKeyword":"油气管线"},{"id":"80818cb5-5ff2-4110-9b83-382b67875167","keyword":"多孔材料","originalKeyword":"多孔材料"},{"id":"27c6b144-1003-455d-b563-46bee416f667","keyword":"拉伸试验","originalKeyword":"拉伸试验"},{"id":"ded75a75-6c4b-4410-a76a-87bb9508802d","keyword":"弹性模量","originalKeyword":"弹性模量"},{"id":"012b8384-e82c-4c2a-832d-42bddfef9f98","keyword":"屈服强度","originalKeyword":"屈服强度"},{"id":"6dd03e2c-f8ba-4bf1-9969-b058e87c3ad8","keyword":"抗拉强度","originalKeyword":"抗拉强度"},{"id":"2dc6b6f1-4529-47f2-8c3c-80f077b1a0b1","keyword":"点蚀","originalKeyword":"点蚀"}],"language":"zh","publisherId":"gtyjxb200506015","title":"模拟点蚀油气管线钢的拉伸性能","volume":"17","year":"2005"},{"abstractinfo":"采用高温高压釜,利用扫描电子显微镜(SEM)、能散X射线谱仪(EDS)和X射线衍射(XRD)技术,并辅以失重法对油套管钢P110在不同条件下的CO2腐蚀速率和行为进行了研究,探讨了在流动介质中多种因素对油套管钢腐蚀造成的影响,并以此提出了P110钢抗冲刷腐蚀的机理.","authors":[{"authorName":"朱世东","id":"798b1bc2-f78a-454b-a4c8-fef3da3adae7","originalAuthorName":"朱世东"},{"authorName":"白真权","id":"84e82ab4-4429-4a90-ae23-eb9d97d0e179","originalAuthorName":"白真权"},{"authorName":"尹成先","id":"f24f5cd0-ea9c-490c-841b-88a7f8005495","originalAuthorName":"尹成先"},{"authorName":"林冠发","id":"70a35eae-69a7-4553-9965-929119c2e327","originalAuthorName":"林冠发"},{"authorName":"尹志福","id":"f4ee00c9-da3e-4ef9-a2ef-523e4b6c84df","originalAuthorName":"尹志福"}],"doi":"10.3969/j.issn.1001-4381.2009.08.007","fpage":"28","id":"27e9f109-0abb-4abe-82f1-b55140bd0b5d","issue":"8","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"f5f74e00-ecaf-445f-ac22-02396894f511","keyword":"油套管","originalKeyword":"油套管"},{"id":"3926922f-7c93-4696-9960-e1413962c1cf","keyword":"P110钢","originalKeyword":"P110钢"},{"id":"0f39cb20-bd65-45ad-b90a-704a835940c9","keyword":"冲刷腐蚀","originalKeyword":"冲刷腐蚀"},{"id":"ed7c0de2-01a2-480b-8b9d-97e81795451e","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"}],"language":"zh","publisherId":"clgc200908007","title":"P110钢抗冲刷腐蚀行为研究","volume":"","year":"2009"},{"abstractinfo":"为了推进超级13Cr不锈钢在油气田中的应用,用高温高压釜系统模拟了油气田腐蚀环境,研究了超级13Cr不锈钢在动静态环境中高温高压下的CO2腐蚀行为,利用扫描电镜、能谱仪和X射线衍射仪等对超级130r不锈钢表面腐蚀产物的形貌及成分进行了分析。结果表明:动态腐蚀时超级13Cr不锈钢的腐蚀速率随温度的升高而增大,150℃时最大,此后腐蚀速率随温度的升高而下降;静态腐蚀速率随温度的升高呈上升趋势;动态腐蚀速率高于静态的,动静态平均腐蚀速率均较小,属于轻度或中度腐蚀,在油气田的安全使用范围之内;动静态腐蚀时超级13Cr不锈钢表面均生成均匀、致密的钝化膜层,表现为均匀腐蚀,腐蚀产物成分为不锈钢基本成分,未发现CO2腐蚀产物,超级13Cr不锈钢具有良好的抗高温高压CO2腐蚀性能。","authors":[{"authorName":"张国超","id":"67352bac-16ab-4167-a0b9-359e56710942","originalAuthorName":"张国超"},{"authorName":"张涵","id":"51157ec8-d5a8-4702-9525-9acdbc04aa42","originalAuthorName":"张涵"},{"authorName":"牛坤","id":"a8f00963-c868-49f2-856c-e97d1a54a6aa","originalAuthorName":"牛坤"},{"authorName":"林冠发","id":"216271bf-e99b-4b96-bf31-e09e3b63d984","originalAuthorName":"林冠发"},{"authorName":"张涓涛","id":"6e9e619c-5db6-42f3-a795-368d7aca4de1","originalAuthorName":"张涓涛"}],"doi":"","fpage":"58","id":"2b827f0c-76c8-4013-899b-a04495e00b5e","issue":"6","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"be002cf2-b986-42b2-9f97-0e907181f5d2","keyword":"CO2腐蚀","originalKeyword":"CO2腐蚀"},{"id":"7f18a786-144e-4b0b-bedd-2f1d9644940e","keyword":"超级13Cr不锈钢","originalKeyword":"超级13Cr不锈钢"},{"id":"3e4156e5-c994-4b4d-af4d-cdb59c6c7ad3","keyword":"高温高压","originalKeyword":"高温高压"}],"language":"zh","publisherId":"clbh201206019","title":"高温高压下超级13Cr不锈钢抗CO2腐蚀性能","volume":"45","year":"2012"},{"abstractinfo":"利用高温高压釜设备模拟油气田环境并辅以失重法,研究了高Cl-条件下H2S分压对P110钢腐蚀速率的影响,结果表明:P110钢的腐蚀速率随着H2S分压的增大呈先增大后减小的趋势,且在0.06 MPa时取得最大值;采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线能谱仪(EDS)技术对腐蚀产物膜进行分析知:H2S分压通过影响腐蚀产物膜厚度、微观吸附形貌和表面膜成分等,进而影响了P110钢的腐蚀速率.","authors":[{"authorName":"朱世东","id":"3b8a4750-a1c1-422b-9f88-3643efef56c4","originalAuthorName":"朱世东"},{"authorName":"白真权","id":"8945291b-579a-4ff2-9847-5aad287eb607","originalAuthorName":"白真权"},{"authorName":"林冠发","id":"3813af3d-518e-4843-8c13-10bb0559e63a","originalAuthorName":"林冠发"},{"authorName":"尹成先","id":"4ca34d21-fc4f-4d4a-87f9-caab286a149f","originalAuthorName":"尹成先"},{"authorName":"刘会","id":"627b718b-823d-4927-8db6-d29a8faf9cae","originalAuthorName":"刘会"}],"doi":"","fpage":"293","id":"4cec73a3-9a06-4c32-8ea1-26bb21b5886e","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"a202c1d0-b361-45d2-8c2e-f9f1fc3c5fb4","keyword":"P110钢","originalKeyword":"P110钢"},{"id":"139b8fe0-19b0-49af-b0fe-43fe67e98e9f","keyword":"H2S分压","originalKeyword":"H2S分压"},{"id":"f2502896-d022-4b8f-b5f3-00b01a54f2af","keyword":"Cl-","originalKeyword":"Cl-"},{"id":"d466c83c-4184-4b3b-a31c-d4b5cb32fce5","keyword":"腐蚀速率","originalKeyword":"腐蚀速率"}],"language":"zh","publisherId":"fsyfh200905002","title":"高Cl-条件下H2S分压对P110钢腐蚀速率的影响","volume":"30","year":"2009"},{"abstractinfo":"在高温高压静态釜中对3种油套钢N80、P110和J55的CO2腐蚀进行了模拟腐蚀试验,通过扫描电子显微镜(SEM)对比分析了腐蚀产物膜的厚度和表面平均晶粒大小随CO2压力的变化规律。结果显示,在试验条件下,3种材料所得到的腐蚀产物膜的纵向形貌为双层结构,其膜厚随着CO2分压变化情况比较相近,在CO2分压为6.89MPa时,膜厚均达到最大,在超临界压力以上急剧减小;膜表面平均晶粒大小随CO2压力的变化都出现了两个峰值和一个低谷,并且在超临界压力以上随着压力增加均急剧减小,而峰值或低谷所对应的CO2压力和晶粒大小,3种材料存在明显的差异。","authors":[{"authorName":"林冠发","id":"829bff6a-9ebe-4523-948d-d4035756fbc2","originalAuthorName":"林冠发"}],"categoryName":"|","doi":"","fpage":"284","id":"769de7bc-e5bf-4569-a91a-8023bcb03392","issue":"5","journal":{"abbrevTitle":"ZGFSYFHXB","coverImgSrc":"journal/img/cover/中国腐蚀封面19-3期-01.jpg","id":"81","issnPpub":"1005-4537","publisherId":"ZGFSYFHXB","title":"中国腐蚀与防护学报"},"keywords":[{"id":"41d92c90-bc55-4ada-8eb7-1deffc92366b","keyword":"腐蚀产物膜","originalKeyword":"腐蚀产物膜"},{"id":"77c3c0fa-bccb-45b1-b92c-6c3c920c3fd8","keyword":"CO2 corrosion","originalKeyword":"CO2 corrosion"},{"id":"af651a15-6880-48fc-b54c-2a788702ccd1","keyword":"CO2 pressure","originalKeyword":"CO2 pressure"},{"id":"48427178-0839-49a1-b4b2-cad709504f4d","keyword":"scale thickness","originalKeyword":"scale thickness"},{"id":"9f02145b-bf0e-4e1f-8e77-5520d8f1b10f","keyword":"grain size","originalKeyword":"grain size"},{"id":"a1d07146-877c-49a8-8de9-5b59022dce8b","keyword":"SEM","originalKeyword":"SEM"}],"language":"zh","publisherId":"1005-4537_2004_5_14","title":"CO2压力对金属腐蚀产物膜形貌结构的影响","volume":"24","year":"2004"}],"totalpage":73,"totalrecord":730}