{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"将未反应核模型拓展应用于烧结矿气相还原,采用四阶龙格库塔法通过编制程序求解混合控制方程.通过数值计算与实验数据的对比,证明烧结矿的气固还原过程和球团矿一样可以用未反应核模型来描述.烧结矿形状不规则,不具有明确的半径,通过与前人研究的比较,本文摒弃了传统处理中的平均半径选取,利用数据分析得到了适用于烧结矿的等效半径,解决了烧结矿应用未反应核模型时的半径选取问题,为铁矿气固还原动力学的研究提供了新的参考.","authors":[{"authorName":"邵久刚","id":"e859632d-8f6b-4c10-9bbd-72be0ff86fdf","originalAuthorName":"邵久刚"},{"authorName":"张建良","id":"2f82676f-a1e3-46c8-9a17-9f93a8d074fd","originalAuthorName":"张建良"},{"authorName":"刘征建","id":"998adfe0-ceb0-4eb4-b622-5917b158e731","originalAuthorName":"刘征建"},{"authorName":"国宏伟","id":"a0881d15-50d8-4137-9305-e32274fe8242","originalAuthorName":"国宏伟"},{"authorName":"杨广庆","id":"4e497408-71b6-4227-9e80-37cf607a1f33","originalAuthorName":"杨广庆"},{"authorName":"王广伟","id":"72f72075-91c3-4a3c-bd86-13b79b4717f6","originalAuthorName":"王广伟"}],"doi":"10.14186/j.cnki.1671-6620.2015.01.006","fpage":"24","id":"8a5cb1c6-9e71-4636-bb42-e0fb314a6699","issue":"1","journal":{"abbrevTitle":"CLYYJXB","coverImgSrc":"journal/img/cover/CLYYJXB.jpg","id":"17","issnPpub":"1671-6620","publisherId":"CLYYJXB","title":"材料与冶金学报"},"keywords":[{"id":"ad220ec1-8dcf-4be9-92a8-a554c4091721","keyword":"铁矿石","originalKeyword":"铁矿石"},{"id":"07bab21c-d7cd-4314-a1a2-31bfcd5e5880","keyword":"气固还原动力学","originalKeyword":"气固还原动力学"},{"id":"63f5b39e-5a51-4585-b072-a86fb0b542b9","keyword":"未反应核模型","originalKeyword":"未反应核模型"},{"id":"aab3d487-4165-4ca5-9738-1d73fb05078c","keyword":"等效半径","originalKeyword":"等效半径"}],"language":"zh","publisherId":"clyyjxb201501006","title":"铁矿石等温气固还原动力学研究","volume":"14","year":"2015"},{"abstractinfo":"采用三维大变形热-力耦合有限元法分析了热轧板带时不同轧辊半径对变形区内轧件变形的影响.得到了不同轧辊半径下变形区内等效应变、剪切应变和应变能量密度的分布规律.结果表明在其他条件相同的情况下,轧辊半径越大,变形区内的变形也越大.该结果对组织细化具有一定的指导意义.","authors":[{"authorName":"罗德兴","id":"5ea6751c-671b-40bf-a0a0-92a58d1d6dfa","originalAuthorName":"罗德兴"},{"authorName":"陈其安","id":"957e34a7-450b-4868-84de-78c3b015df34","originalAuthorName":"陈其安"},{"authorName":"刘立文","id":"568cd80a-576c-4334-a9f5-29fc9e32a467","originalAuthorName":"刘立文"}],"doi":"","fpage":"40","id":"59b0713a-755c-43cf-878e-40b91c7643e2","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"1fb7dcb1-b5b8-4441-99c7-1723eb9e1104","keyword":"轧辊半径","originalKeyword":"轧辊半径"},{"id":"2bc0fdf9-225a-4c53-a603-9562176676e5","keyword":"变形","originalKeyword":"变形"},{"id":"5a10d697-4bef-4aa2-a558-ff45c0c87c45","keyword":"有限元法","originalKeyword":"有限元法"}],"language":"zh","publisherId":"gt200401011","title":"轧辊半径对轧件变形影响的有限元分析","volume":"39","year":"2004"},{"abstractinfo":"通过采用三明治夹芯板等效方法计算,得到了等效物理参数,建立了三明治夹芯蜂窝板的有限元模型,完成了蜂窝夹层板模型的静力分析和随机振动分析,并对试验样机进行了静力与随机振动分析和试验验证.结果表明:基于三明治夹芯板等效理论建立的有限元模型能够准确反映蜂窝夹层板的静强度特性和结构动特性,静力应变值结果误差小于4%,振动固有频率结果误差小于5%,偏差较小,表明所建模型合理、准确.","authors":[{"authorName":"季宝锋","id":"eadd962c-020a-4c06-a797-9d2583bd85b5","originalAuthorName":"季宝锋"},{"authorName":"陈东良","id":"2a725397-39e8-426a-a163-9fb5f9791210","originalAuthorName":"陈东良"},{"authorName":"孙艳杰","id":"143c5f19-6af3-47c4-b42a-e98da16313de","originalAuthorName":"孙艳杰"},{"authorName":"王世勋","id":"ba6208d9-17c8-4d00-b39a-81b43aab37d0","originalAuthorName":"王世勋"},{"authorName":"陈英伟","id":"b60d7c05-96ce-4f8a-8886-79ea510fda06","originalAuthorName":"陈英伟"}],"doi":"10.3969/j.issn.1007-2330.2015.02.003","fpage":"12","id":"48a6ca07-7ea1-4e46-8493-37a629056a99","issue":"2","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"82cd5c77-2993-4edc-82e5-b0f6d0b08ada","keyword":"蜂窝夹层板","originalKeyword":"蜂窝夹层板"},{"id":"218aeae8-3ec6-4731-8824-00a91ec00d6d","keyword":"三明治夹芯板","originalKeyword":"三明治夹芯板"},{"id":"9ce96d92-c9f6-49b6-96ec-f5184e176cf4","keyword":"固有频率","originalKeyword":"固有频率"},{"id":"6ea73b2b-9f23-46c2-b1c9-4e2c761f7a45","keyword":"等效方法","originalKeyword":"等效方法"}],"language":"zh","publisherId":"yhclgy201502003","title":"基于等效理论的蜂窝夹层板强度等效分析","volume":"45","year":"2015"},{"abstractinfo":"以水-酒精混合蒸汽在斜块上的Marangoni凝结实验图片为基础,统计分析了不同浓度和过冷度下凝结液珠的半径数目比例分布、平均半径半径偏差.研究发现:在不同浓度和过冷度下,凝结液珠的半径大部分集中在0.1 mm~0.3 mm半径范围内,占到液滴总数的80%;凝结液珠平均半径随过冷度的增大而增大,随浓度的增大而减小;半径偏差最大值所对应的过冷度与该工况下凝结换热特性曲线上传热系数最大时所对应的过冷度大致相同.","authors":[{"authorName":"胡申华","id":"0be9a64f-fbaf-4520-889e-8a7e83bf0fce","originalAuthorName":"胡申华"},{"authorName":"严俊杰","id":"b41d290a-d2b2-44c8-9f36-742c9722b62c","originalAuthorName":"严俊杰"}],"doi":"","fpage":"230","id":"31b77d82-98f4-4838-bb72-2f8d40d056ed","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"27315efe-73e6-4920-a7be-ff28795d3e3a","keyword":"凝结换热","originalKeyword":"凝结换热"},{"id":"2dfb5b46-c9de-4031-a6af-183d49ab5d5e","keyword":"Marangoni凝结","originalKeyword":"Marangoni凝结"},{"id":"60fc414c-ac8d-441e-a6eb-b2c1caa4b8ef","keyword":"液珠分布","originalKeyword":"液珠分布"}],"language":"zh","publisherId":"gcrwlxb201102013","title":"Marangoni珠状凝结液珠半径分布的研究","volume":"32","year":"2011"},{"abstractinfo":"目的 通过建立双粗糙表面磨削模型,获得微凸体曲率半径对材料磨损的影响大小.方法 选取磨具上微凸体与工件上不同变化曲率的微凸体分别建立滑动磨削模型I和模型II,考虑了磨削过程中材料的弹性/塑性变形及其断裂失效,运用有限元方法分析探讨滑动过程相嵌微凸体的应变变化以及磨屑脱离情况.结果 磨削滑动过程中,在同等接触干涉量δ=1.30μm条件下,接触角较小的微凸体接触对(θ1≈19.4°)其上微凸体发生磨损断裂,而接触角较大的微凸体接触对(θ2≈25.5°)其下微凸体发生磨损断裂.磨损微凸体最大的等效塑性应变量发生在次表层的1.5~2.0μm处.结论 双粗糙表面磨削过程中,在其他影响因素相同的情况下,曲率半径较小的微凸体更易形成磨屑.磨损微凸体最大的等效塑性应变量发生在次表层的某一深度处,随着塑性变形的增大,应力三轴度减小,导致材料表层下微观裂纹的萌生形成磨屑.","authors":[{"authorName":"赖联锋","id":"63f3ca3b-258c-48ce-b2e1-cd12ba4ac86e","originalAuthorName":"赖联锋"},{"authorName":"高诚辉","id":"9433beea-0a1b-4604-ab34-191ee8e566f0","originalAuthorName":"高诚辉"},{"authorName":"黄健萌","id":"47a49e55-f357-4a7b-a49f-3f2e297fd051","originalAuthorName":"黄健萌"}],"doi":"10.16490/j.cnki.issn.1001-3660.2017.01.017","fpage":"100","id":"bd510983-3e63-48b2-aa43-291c7d105b10","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"a338c2c0-bfef-4ac6-8d3b-2f201bef6203","keyword":"曲率半径","originalKeyword":"曲率半径"},{"id":"6306bcb6-d4ba-4c3a-afe0-e252ef65110c","keyword":"微磨削模型","originalKeyword":"微磨削模型"},{"id":"4a49a5b9-dc92-4909-9e41-6753c3ab6273","keyword":"塑性应变","originalKeyword":"塑性应变"},{"id":"32e2e175-395a-4fa6-bf14-f49e6204f4c1","keyword":"应力三轴度","originalKeyword":"应力三轴度"}],"language":"zh","publisherId":"bmjs201701017","title":"双粗糙表面磨削过程微凸体曲率半径的影响分析","volume":"46","year":"2017"},{"abstractinfo":"在圆-椭圆-圆孔型中轧制合金钢棒材时,提出了接触边界临界点的概念,并且推导出了临界点的解和新的等效接触断面面积公式,给出了计算平均轧辊半径的新模型.为了验证新模型,进行了棒材轧制试验并且利用三维刚塑性有限元法对轧制过程进行了模拟.把不同模型得到的理论结果与实验值和模拟值作了比较后证明新模型具有很高的精度,因此可以作为轧制理论和实践的重要参考.","authors":[{"authorName":"董永刚","id":"48c82154-fbad-48f8-b237-2f5c72208947","originalAuthorName":"董永刚"},{"authorName":"张文志","id":"701b9a8d-934d-4206-bfd1-40ed04c8c9e7","originalAuthorName":"张文志"},{"authorName":"宋剑锋","id":"bf9d969f-4f79-4199-81c1-37fd0149ba33","originalAuthorName":"宋剑锋"}],"doi":"10.3969/j.issn.1001-7208.2006.06.012","fpage":"50","id":"ef3c974e-62bf-4d2c-b9c8-e701f1a881e3","issue":"6","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"b8d7518e-57f1-420c-b5c2-19ed5e6da6b2","keyword":"棒材轧制","originalKeyword":"棒材轧制"},{"id":"9869aa5f-4436-48aa-b6a4-63f7604554a6","keyword":"平均轧辊半径","originalKeyword":"平均轧辊半径"},{"id":"052bcf0e-9450-463c-b115-407bb216e62d","keyword":"接触边界临界点","originalKeyword":"接触边界临界点"},{"id":"3aaa781c-278a-4b17-ad8a-e7341e8e5c8c","keyword":"计算模型","originalKeyword":"计算模型"}],"language":"zh","publisherId":"shjs200606012","title":"棒材轧制时平均轧辊半径的新计算模型","volume":"28","year":"2006"},{"abstractinfo":"在相对论平均场理论框架下在拉氏量密度中引入同位旋相关的高阶修正项, 研究了中子皮厚度和中子星半径的关系.利用有效相互作用PK1得到208Pb的中子皮厚度最小可达0.17 fm, 这与近期Skyrme-HF模型得到的结果一致.随着同位旋相关的高阶修正项系数的变化, 208Pb的中子皮厚度和中子星半径的变化趋势相同.","authors":[{"authorName":"李俊","id":"fba242fd-b996-4020-90a3-f354292629f5","originalAuthorName":"李俊"},{"authorName":"沈刚","id":"a171b86f-e5f0-40cf-8a5a-6332fadb7de1","originalAuthorName":"沈刚"},{"authorName":"G.C.Hillhouse","id":"902c2864-7d6e-4977-8a2c-8cdb3068c676","originalAuthorName":"G.C.Hillhouse"},{"authorName":"孟杰","id":"7a55528e-9873-407b-9b81-528ec9ada28c","originalAuthorName":"孟杰"}],"doi":"10.3969/j.issn.1007-4627.2005.01.008","fpage":"27","id":"fed6782f-113f-4a05-aa1c-40d0c3a9e691","issue":"1","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"9f0aeb01-2466-4942-adb2-f10a1edae29d","keyword":"相对论平均场","originalKeyword":"相对论平均场"},{"id":"2bd71c81-dc92-4f5b-81a0-04e6d0e7f13f","keyword":"同位旋相关高阶修正项","originalKeyword":"同位旋相关高阶修正项"},{"id":"fcb5bc86-0d4c-40ba-8815-e8d1cff9a1cc","keyword":"中子皮","originalKeyword":"中子皮"},{"id":"1a94d681-70ef-4be5-87b9-289d567a04e2","keyword":"中子星","originalKeyword":"中子星"}],"language":"zh","publisherId":"yzhwlpl200501008","title":"中子皮厚度与中子星半径","volume":"22","year":"2005"},{"abstractinfo":"为了研究不同屈服准则下板材等效应力-等效应变曲线的适用性,基于Hill48、Hill79、Hill90和Hosford屈服准则和试验获得的板材双向拉伸应力应变曲线,对两种薄钢板在不同加载比例下的等效应力-等效应变曲线进行了试验研究和理论分析,结果表明,对于所研究的两种薄钢板,采用Hill48、Hill79、Hill90屈服准则得到的不同加载比例下等效应力-等效应变曲线的差别较大,而采用Hosford屈服准则得到的等效应力-等效应变曲线相差很小.","authors":[{"authorName":"吴向东","id":"75f26ee2-567e-4d83-9d83-c629370fb915","originalAuthorName":"吴向东"},{"authorName":"万敏","id":"62b9784e-8b91-430e-84ae-c52bc0524cd7","originalAuthorName":"万敏"},{"authorName":"王文平","id":"04249d3f-e12f-474d-b528-c040ee1c52b1","originalAuthorName":"王文平"}],"doi":"","fpage":"236","id":"4620dbff-fff1-4dae-8f5c-4e0fb6122bd2","issue":"2","journal":{"abbrevTitle":"CLKXYGY","coverImgSrc":"journal/img/cover/CLKXYGY.jpg","id":"14","issnPpub":"1005-0299","publisherId":"CLKXYGY","title":"材料科学与工艺"},"keywords":[{"id":"4f9f5ae1-5e62-4beb-8079-a7d2832e3241","keyword":"屈服准则","originalKeyword":"屈服准则"},{"id":"b159bdb8-d27a-4ec1-b4bd-aa2627a0b7e0","keyword":"各向异性","originalKeyword":"各向异性"},{"id":"7ff6c3a3-5aa4-4a35-814c-50023ed1c6aa","keyword":"等效应力","originalKeyword":"等效应力"},{"id":"f319017e-0294-4b9a-883a-8716936f6363","keyword":"等效应变","originalKeyword":"等效应变"}],"language":"zh","publisherId":"clkxygy200902022","title":"板材等效应力-等效应变曲线的建立及分析","volume":"17","year":"2009"},{"abstractinfo":"蜂窝芯层等效参数的相关研究是蜂窝夹层结构设计和计算的重要基础,深入研究蜂窝芯层的力学特性具有重要的应用意义.对蜂窝芯层等效参数的研究进行了综述,首先介绍蜂窝芯层面内等效参数的研究进展,主要基于经典梁理论和均匀化理论,从线性和非线性两方面展开综述.然后介绍芯层面外等效参数研究,围绕各种计算方法、等效力学模型、线性和非线性等效,以及各自的优缺点等问题进行总结和评述.此外还对一些解析公式的精度和适用范围进行了比较,以方便工程应用.最后,指出了这一领域需要进一步研究的若干问题.","authors":[{"authorName":"富明慧","id":"1a02b4fb-8b60-4507-9eb9-d9bc2877910b","originalAuthorName":"富明慧"},{"authorName":"徐欧腾","id":"f4ee8e6f-2d7a-46cc-a070-ceb06299beac","originalAuthorName":"徐欧腾"},{"authorName":"陈誉","id":"ecced653-3812-4df8-b39c-4421bddb8574","originalAuthorName":"陈誉"}],"doi":"10.11896/j.issn.1005-023X.2015.05.022","fpage":"127","id":"c2616ed3-a193-494b-89d9-98edb5ac8f2d","issue":"5","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"dde5b345-1008-4f4b-a170-ee5027d44920","keyword":"蜂窝芯层","originalKeyword":"蜂窝芯层"},{"id":"e8edb091-1f38-4857-b40a-a3a4a4dbb61a","keyword":"等效参数","originalKeyword":"等效参数"},{"id":"106a7e0b-0b88-4db9-82ee-a6d4db9461ca","keyword":"面内模量","originalKeyword":"面内模量"},{"id":"66164ce2-5ff7-4acc-820c-63ccfbe1402e","keyword":"面外模量","originalKeyword":"面外模量"}],"language":"zh","publisherId":"cldb201505022","title":"蜂窝芯层等效参数研究综述","volume":"29","year":"2015"},{"abstractinfo":"为获得不同透照电压下不同标准材料的射线透照等效系数,以50 kV透照电压为例,以钛为标准材料,揭示了同时透照法和图像法两种等效系数的测试方法.通过对同时透照法步骤及存在问题的分析,引入了解决问题的阶梯扩展和厚度校正两种手段.在等效系数图像法的分析过程中,明确了曝光曲线种类和黑度选取的原则,阐述了曝光曲线与图像法的关系,结合数学手段运用,获得了等效系数与透照电压相关,但不随曝光量改变而变化的结论.","authors":[{"authorName":"蔡闰生","id":"a9badc37-315c-4a91-a3cf-a79c628befa6","originalAuthorName":"蔡闰生"},{"authorName":"袁生平","id":"406f814a-90d0-4c1a-9441-ea9604948d6c","originalAuthorName":"袁生平"},{"authorName":"任华友","id":"ea8daf45-a4c0-4c6a-a610-5555e7e5d252","originalAuthorName":"任华友"}],"doi":"10.3969/j.issn.1007-2330.2014.04.018","fpage":"86","id":"79b0c576-615b-436d-b9e1-3afdd359f7b9","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"28a60fe6-3470-4da4-9243-7d1dc86f7bf4","keyword":"钛","originalKeyword":"钛"},{"id":"7d0f57b8-12ee-4efb-9a84-1529de1bf8b5","keyword":"标准材料","originalKeyword":"标准材料"},{"id":"b3de16f6-ef4f-4cfb-8295-b431d9732b3a","keyword":"等效系数","originalKeyword":"等效系数"},{"id":"2028251f-2106-4c0c-b9e9-e83337a93927","keyword":"测试方法","originalKeyword":"测试方法"}],"language":"zh","publisherId":"yhclgy201404018","title":"射线透照等效系数测试方法分析","volume":"44","year":"2014"}],"totalpage":261,"totalrecord":2608}