{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用超声波-沉淀法制备PDP小颗粒蓝色荧光粉BaMgAl10O17:0.1Eu,实验最佳条件为:前驱液PH=8~9,热预温度为650℃,灼烧温度1370℃,超声波作用时间为2h.产物经粉晶衍射仪检测为BaMgAl10O17,其厚度约为80nm的六方晶颗粒,平均粒度为360nm的小颗粒蓝色荧光粉,相对发光强度有明显提高.实验通过在制备样品的分散介质中加适量硝酸来调节样品表面的ζ电位,其样品原来ζ电位的负值可调控为正值,可以改善蓝粉在后续PDP涂屏工艺浆料中的流变行为,有利于提高PDP制屏的质量.","authors":[{"authorName":"袁曦明","id":"e0a38891-c099-465a-88a4-156428db7a02","originalAuthorName":"袁曦明"},{"authorName":"杨应国","id":"6e31b46f-1c22-41e2-8f0d-b36b98262d19","originalAuthorName":"杨应国"},{"authorName":"王永钱","id":"0efcd856-0e26-4232-a9d5-07996740983d","originalAuthorName":"王永钱"},{"authorName":"王娟娟","id":"46a47edb-6732-490d-a784-11073e19bfcd","originalAuthorName":"王娟娟"},{"authorName":"王峰","id":"8d126229-b02e-4c1e-93fc-fb25e13e0a2c","originalAuthorName":"王峰"},{"authorName":"谢安","id":"d9d2bfa5-c494-4cac-97dd-38b94d04d0da","originalAuthorName":"谢安"}],"doi":"10.3969/j.issn.1004-0277.2010.04.011","fpage":"45","id":"39f61917-65b4-40eb-974d-aa46d8449d8e","issue":"4","journal":{"abbrevTitle":"XT","coverImgSrc":"journal/img/cover/XT.jpg","id":"65","issnPpub":"1004-0277","publisherId":"XT","title":"稀土"},"keywords":[{"id":"0bf05321-fb19-439d-9ff3-12fd961da186","keyword":"超声波-沉淀法","originalKeyword":"超声波-沉淀法"},{"id":"1b6e5efa-e45f-4302-89f3-339db5eb53f5","keyword":"PDP蓝粉","originalKeyword":"PDP蓝粉"},{"id":"d5024f8a-ea8c-4471-8bec-6019cd5735f3","keyword":"小颗粒","originalKeyword":"小颗粒"},{"id":"1fa29af5-aef4-476d-b7b2-9c43b3354ff4","keyword":"ζ电位","originalKeyword":"ζ电位"}],"language":"zh","publisherId":"xitu201004011","title":"超声波-沉淀法制备PDP小颗粒蓝粉及其粉体ζ电位的测试","volume":"31","year":"2010"},{"abstractinfo":"以电解钴、硝酸和尿素为原料,在超声波辐照下,采用均相沉淀-煅烧工艺合成了纳米Co3O4,并对沉淀条件、煅烧温度以及前驱体组成等进行了研究.研究表明,超声波作用可以明显降低前驱体及Co3O4的粒径;所得产物粒子近似为球形,平均粒径为20nm左右.本文首次报道了在常压沸点温度(102±1)℃下通过均相沉淀法获得的前驱体的XRD图谱,并根据TG-DTG、XRD、FTIR以及化学分析确定了其化学组成为CoO3·2Co(OH)21.5H2O.XRD物相分析证明,该前驱体可在200℃以上经3h煅烧转变成立方晶相Co3O4,从而大大节省了热能.TG-DTG分析还表明,前驱体转变为Co3O4时分解和氧化同步进行.","authors":[{"authorName":"李春","id":"c3327190-b702-4db4-8c3b-281351cddd0a","originalAuthorName":"李春"},{"authorName":"郭灵虹","id":"f1ebce2b-70f0-455a-b7cb-0adaed74d903","originalAuthorName":"郭灵虹"},{"authorName":"李自强","id":"9fe7ece9-c467-4da4-aed8-6be82cef0760","originalAuthorName":"李自强"},{"authorName":"支肖琼","id":"04a4afbd-4471-41d6-a54f-7f2409a80892","originalAuthorName":"支肖琼"}],"doi":"","fpage":"3057","id":"9bad6f62-d7e3-4b45-ab19-754569e2fae2","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"7804da33-b071-408b-b69b-4caa3fda0e0b","keyword":"纳米四氧化三钴","originalKeyword":"纳米四氧化三钴"},{"id":"7ec1d317-3ec2-409b-abec-a704af10d23b","keyword":"均相沉淀法","originalKeyword":"均相沉淀法"},{"id":"ce8052bd-8e7d-4c32-9161-9d22b0b60f7a","keyword":"超声波辐照","originalKeyword":"超声波辐照"},{"id":"800bd892-fc2e-45c7-b2d5-ef1d124e5273","keyword":"前驱体","originalKeyword":"前驱体"}],"language":"zh","publisherId":"gncl2004z1857","title":"超声波-均相沉淀法合成纳米Co3O4及前驱体研究","volume":"35","year":"2004"},{"abstractinfo":"本研究以氯氧化锆、硝酸钇、硫酸镍为主要原料,采用超声波-共沉淀法制备了纳米级NiO-YSZ.通过考察煅烧温度,超声功率,超声时间,pH值和分散剂等因素对产物影响来优化制备参数.采用XRD、BET、TEM和粒径分布等测试方法对产物进行了表征,结果表明:煅烧温度在800 ℃,超声功率120 W,超声时间20 min,pH值为11的条件下,能够得到立方晶型的、分散性好的、粒径分布均匀的NiO-YSZ产物.产物的粒径分布在10~30 nm左右,团聚度指数为仅为1.78,比表面积为40.2 m2/g.","authors":[{"authorName":"王俏运","id":"25a2baad-3ff3-436e-855b-45f79859c560","originalAuthorName":"王俏运"},{"authorName":"黄慧民","id":"34284842-3ff5-48c2-8ee8-1c90771116d9","originalAuthorName":"黄慧民"},{"authorName":"郑育英","id":"92b83621-887f-4c85-8ba4-ba16303b0d2b","originalAuthorName":"郑育英"},{"authorName":"许奕春","id":"376f43c9-ca1a-4800-a1ad-b35cbf3bf007","originalAuthorName":"许奕春"}],"doi":"","fpage":"324","id":"b4413729-a59c-4b42-9da1-fefa9fc04183","issue":"2","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"186979bb-54a8-4ddf-b78c-ccfa9a9d3dca","keyword":"超声波","originalKeyword":"超声波"},{"id":"0a5aaeec-6b19-4a33-96b3-a2a0bbe8548d","keyword":"共沉淀法","originalKeyword":"共沉淀法"},{"id":"94073303-7d56-4aa5-813e-258fa7a096fa","keyword":"纳米粉体","originalKeyword":"纳米粉体"},{"id":"c32f70c3-b45e-4fee-a05a-cfebf36e8380","keyword":"NiO-YSZ","originalKeyword":"NiO-YSZ"}],"language":"zh","publisherId":"gsytb201002014","title":"超声波-共沉淀法制备纳米级NiO-YSZ的研究","volume":"29","year":"2010"},{"abstractinfo":"以硝酸铁和尿素为原料,利用超声波与均匀沉淀相结合的方法,研制出了长轴10 nm、短轴5 nm的α-Fe2O3粒子.并对样品进行了XRD、TGA、DTA、TEM等表征分析.","authors":[{"authorName":"徐锁平","id":"5b65605f-8eb2-4534-b0df-7c6a2fbcbb7f","originalAuthorName":"徐锁平"},{"authorName":"朱广军","id":"3fd1fb09-eea0-4cfd-a7e5-c948af4b4639","originalAuthorName":"朱广军"}],"doi":"10.3969/j.issn.0253-4312.2005.02.010","fpage":"31","id":"72b6c118-efc1-4663-b1f5-7f0b72d3d83f","issue":"2","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"c407fa1a-6d60-48a5-ba77-e07b12445cc4","keyword":"超声波","originalKeyword":"超声波"},{"id":"f2fc23b7-abd8-4e62-bc56-0a34171d1686","keyword":"氧化铁","originalKeyword":"氧化铁"},{"id":"c7154f57-3ce5-49f6-8e15-b41ae6547174","keyword":"纳米微粒","originalKeyword":"纳米微粒"},{"id":"0f79ed1f-5a4d-4b0c-bf01-280999bc137d","keyword":"均匀沉淀法","originalKeyword":"均匀沉淀法"}],"language":"zh","publisherId":"tlgy200502010","title":"超声波-均匀沉淀法制备纳米氧化铁","volume":"35","year":"2005"},{"abstractinfo":"采用超声波沉淀法制备了不同摩尔比例Y掺杂氢氧化镍,对其粒度分布、结构及电化学性能进行了测试分析.XRD测试表明,样品均为α和β相混合结构的Ni(OH)2.激光粒度测试表明,样品均为纳米颗粒,且分布均匀,平均粒径在50~80nm之间.分别将制备的样品以8%比例与工业用微米级球镍混合制成复合镍电极,电极的可逆性和充电效率均随Y掺杂比例增大先提高后下降,Y含量1.17%时,其电极可逆性和充电效率达到最佳,放电比容量达到最大,0.1和0.5C倍率下的比容量分别达到370和358mAh/g,且具有较低充电电压和较高放电平台,该结果比目前市售镍氢电池比容量(230~250mAh/g)高48%~60%.对加超声波和不加超声波制备的样品性能进行了比较.","authors":[{"authorName":"周焯均","id":"bcb005ac-8633-4d17-b3ae-2c6bc3b9889a","originalAuthorName":"周焯均"},{"authorName":"朱燕娟","id":"7f95e77c-aa80-4f61-93db-87acd3216a98","originalAuthorName":"朱燕娟"},{"authorName":"张仲举","id":"88e968fd-f110-4e3f-bf21-c1b287cb976a","originalAuthorName":"张仲举"},{"authorName":"叶贤聪","id":"73bf27cb-d851-458b-a768-5f8221b48921","originalAuthorName":"叶贤聪"},{"authorName":"伍尚改","id":"3b5f75ca-1f08-47f1-9839-d3ab09782b90","originalAuthorName":"伍尚改"},{"authorName":"郑汉忠","id":"16b291e4-9bb8-4cef-a341-ee461e26aec8","originalAuthorName":"郑汉忠"},{"authorName":"林晓然","id":"7f5f30de-440a-4e89-ae0b-cf0bf9e823dd","originalAuthorName":"林晓然"},{"authorName":"包杰","id":"cf37c629-ded3-4b37-a5f7-2538e1a67f5f","originalAuthorName":"包杰"}],"doi":"","fpage":"1287","id":"2092cbe9-1383-48ed-81b6-157f3fb656cb","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5e87e4b4-3dcb-412e-bfb1-b45d73751648","keyword":"超声波沉淀法","originalKeyword":"超声波沉淀法"},{"id":"2bef87c3-44bf-4d61-a238-d0fd9394c119","keyword":"Y掺杂","originalKeyword":"Y掺杂"},{"id":"39c40d60-c816-4cbd-ae2b-2be131526530","keyword":"混合相纳米氢氧化镍","originalKeyword":"混合相纳米氢氧化镍"},{"id":"f15e285b-5318-4914-a573-34a49feb19b4","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"xyjsclygc201107035","title":"超声波沉淀法制备Y掺杂纳米多相Ni(OH)2及其性能研究","volume":"40","year":"2011"},{"abstractinfo":"介绍超声波水浸探伤的原理、设备、技术参数等,并将该技术应用于薄壁钢管产品的分选.","authors":[{"authorName":"何岩","id":"1df27da7-4dc3-4dd5-a1f8-767709bfebad","originalAuthorName":"何岩"},{"authorName":"郭重雄","id":"6689026b-66ea-419b-be3b-87765233b1e2","originalAuthorName":"郭重雄"},{"authorName":"张龙","id":"f9b8d4d6-c17b-40ad-84e9-cb23f690f502","originalAuthorName":"张龙"}],"doi":"10.3969/j.issn.1001-0777.2003.04.007","fpage":"16","id":"0b4dfd42-e072-46e5-ac78-e87827d92afe","issue":"4","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"20ccd07f-d73e-4a7b-a3de-f46e32ffe80e","keyword":"超声波","originalKeyword":"超声波"},{"id":"a518e262-18b5-42ee-bfe3-5473a78c0908","keyword":"水浸","originalKeyword":"水浸"},{"id":"0d79ad53-bfe0-4da8-a904-06bdf5232069","keyword":"探伤","originalKeyword":"探伤"}],"language":"zh","publisherId":"wlcs200304007","title":"薄壁钢管超声波水浸探伤","volume":"","year":"2003"},{"abstractinfo":"介绍了超声波喷水穿透的检测原理及自行研制的四轴自动超声波喷水穿透C扫描检测系统.利用该检测系统对包括平板试样件,大厚度模压件,以及筒形结构件等先进复合材料进行超声波喷水穿透检测,结果表明该方法对先进复合材料中存在的孔隙、裂纹、脱粘和分层等缺陷能有效检出.","authors":[{"authorName":"赵建华","id":"a5b8295b-94d5-4f72-9ce0-31048423b70c","originalAuthorName":"赵建华"},{"authorName":"罗明","id":"e2775eec-8624-43ef-a1e1-dae92bbd583d","originalAuthorName":"罗明"},{"authorName":"吴时红","id":"294dedfe-06b4-4e54-8792-df6c9b9798ad","originalAuthorName":"吴时红"},{"authorName":"何双起","id":"ce38502d-c4fb-4523-9221-4dc0842cb3fd","originalAuthorName":"何双起"},{"authorName":"赵伟栋","id":"de583873-5b65-46c9-baf5-0338e0c2b4b6","originalAuthorName":"赵伟栋"}],"doi":"10.3969/j.issn.1007-2330.2012.04.028","fpage":"105","id":"4cc33d15-ab90-4ee8-9ae1-f90191829daf","issue":"4","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"9cd58099-11c5-41fb-87ad-dd0f70048fde","keyword":"超声波喷水穿透","originalKeyword":"超声波喷水穿透法"},{"id":"f7d5d05f-1b98-4dc8-8ab8-0e66cc5a11fe","keyword":"先进复合材料","originalKeyword":"先进复合材料"},{"id":"77133eb8-b943-4aeb-a198-dfb0159dd564","keyword":"缺陷","originalKeyword":"缺陷"}],"language":"zh","publisherId":"yhclgy201204028","title":"超声波喷水穿透在先进复合材料检测中的应用","volume":"42","year":"2012"},{"abstractinfo":"目前,有关超声波对有机改性凹凸棒黏土吸附剂的再生研究不多.研究了有机改性凹凸棒黏土吸附剂吸附Ni(Ⅱ)后,在超声波作用下再生后吸附Ni(Ⅱ)的效果及其与再生各因素的关系,分析了超声波对吸附剂的再生机理.结果表明:用超声波对有机改性凹凸棒黏土吸附剂进行再生,在超声波频率40 Hz、功率500 W的条件下,最佳再生温度为45℃,最佳再生时间为1 min,最佳再生pH值为6,最佳再生固液比为7g/L.吸附剂再生5次后,仍有较好的吸附效果.","authors":[{"authorName":"李静萍","id":"e02eeaab-2b0f-41a8-8ffb-2a759c34d4a3","originalAuthorName":"李静萍"},{"authorName":"张立威","id":"ab564743-d10a-4062-b771-50fd0c519ad5","originalAuthorName":"张立威"},{"authorName":"杨佳静","id":"58822a09-9f7f-41f2-96ff-8c1b2f01eabb","originalAuthorName":"杨佳静"},{"authorName":"管振杰","id":"27882ad3-64fe-42f5-99aa-3a8e3a320808","originalAuthorName":"管振杰"},{"authorName":"张念","id":"30dd1dc2-b096-40d7-a82a-f481e8e4b59b","originalAuthorName":"张念"},{"authorName":"仝云霄","id":"a4c3e89f-aa13-4a7b-9646-951d85c61471","originalAuthorName":"仝云霄"},{"authorName":"蔺潇","id":"a7a9c08e-507b-4421-9ce5-fe523fb2af5a","originalAuthorName":"蔺潇"}],"doi":"","fpage":"55","id":"33bb00f5-37e6-445c-88fc-a428e1aa5333","issue":"1","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"ac525df2-86f1-4be6-89d3-9791803cd72c","keyword":"吸附剂","originalKeyword":"吸附剂"},{"id":"26377cb5-1fba-463d-b66d-10c75d615b33","keyword":"超声波再生","originalKeyword":"超声波再生"},{"id":"20d9f362-7c9e-4631-a790-d03373ca0a4c","keyword":"再生机理","originalKeyword":"再生机理"},{"id":"b8a63c4b-6b5b-42b9-88d6-a304112752b8","keyword":"凹凸棒黏土","originalKeyword":"凹凸棒黏土"},{"id":"8923d6b0-ca46-4883-bff6-5ef2b8127baa","keyword":"有机改性","originalKeyword":"有机改性"},{"id":"61e32836-0ff3-4666-8255-9b729ee518ca","keyword":"Ni(Ⅱ)","originalKeyword":"Ni(Ⅱ)"}],"language":"zh","publisherId":"clbh201401017","title":"超声波对吸附Ni(Ⅱ)吸附剂的再生","volume":"47","year":"2014"},{"abstractinfo":"研究了频率为49 KHz的超声波对涂料染色效果的影响.结果表明,超声波施加于阳离子改性阶段,可以缩短改性时间15 min左右;超声波施加于染色阶段,可以明显提高涂料上染百分率及染色速率;超声波施加于固色阶段,可以提高湿摩擦牢度半级左右.","authors":[{"authorName":"郝龙云","id":"c38adee7-d097-4974-b748-643e3e67c9b5","originalAuthorName":"郝龙云"},{"authorName":"蔡玉青","id":"ac80062e-63b2-46ec-af95-195632340e97","originalAuthorName":"蔡玉青"}],"doi":"10.3969/j.issn.0253-4312.2007.07.012","fpage":"39","id":"ecd3bfbc-675b-43b8-8e44-da42455fba66","issue":"7","journal":{"abbrevTitle":"TLGY","coverImgSrc":"journal/img/cover/TLGY.jpg","id":"61","issnPpub":"0253-4312","publisherId":"TLGY","title":"涂料工业 "},"keywords":[{"id":"c2b56207-89f1-4ef3-9f11-3aa8d51dd6d6","keyword":"超声波","originalKeyword":"超声波"},{"id":"5f2cf4f4-2d74-448c-a59c-3e9606513fd8","keyword":"阳离子改性","originalKeyword":"阳离子改性"},{"id":"696a7edd-9b58-44e8-a455-243122c13b1f","keyword":"涂料","originalKeyword":"涂料"},{"id":"deea5893-4304-488b-93e1-cf71a55cc96b","keyword":"固色","originalKeyword":"固色"},{"id":"06275caa-b592-4542-beef-90e141cdeafd","keyword":"牢度","originalKeyword":"牢度"}],"language":"zh","publisherId":"tlgy200707012","title":"超声波辅助涂料染色","volume":"37","year":"2007"},{"abstractinfo":"采用超声波对乙烯基酯树脂、玻璃纤维/乙烯基酯树脂、碳纤维/乙烯基酯树脂3种体系的固化反应过程进行了实时监测,准确测量了超声波在3种体系中的传播速度及振幅衰减随体系同化反应时间的变化,研究了纤维对树脂体系凝胶时间、固化过程体积储能模量及反应活化能的影响.结果表明,玻璃纤维/树脂体系的反应活化能较纯树脂体系减小14%,同化速率加快;而碳纤维/树脂体系的反应活化能较纯树脂体系增大15%,固化速率较纯树脂体系慢.超声波技术能够实时在线监测并量化纤维/树脂复合体系的固化行为,为复合材料的制备工艺和性能研究提供了一种重要的量化手段.","authors":[{"authorName":"陶博然","id":"f410cf90-e4bc-45f3-ba99-ca273e18f0bc","originalAuthorName":"陶博然"},{"authorName":"李建新","id":"6e441672-4538-421e-a713-e09da9c24ec7","originalAuthorName":"李建新"},{"authorName":"吴晓青","id":"1c4943c0-6a6f-468e-8486-c7e90cd368a6","originalAuthorName":"吴晓青"},{"authorName":"何本桥","id":"3bf48be3-be99-4c67-93e6-907b80edc87f","originalAuthorName":"何本桥"},{"authorName":"杨涛","id":"4a42ea56-7985-4bc7-8a64-246bfdbf1807","originalAuthorName":"杨涛"},{"authorName":"刘秀军","id":"4b419ec8-089c-4f54-b95c-4cab4302453f","originalAuthorName":"刘秀军"},{"authorName":"胡子军","id":"2a8ce1dd-7501-4206-9b17-3699ccd5f9de","originalAuthorName":"胡子军"}],"doi":"","fpage":"7","id":"cc2f5080-743f-45c1-ae20-a734454817d3","issue":"1","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"902b2e42-81c7-488b-a4cc-ece7b95ffca9","keyword":"超声技术","originalKeyword":"超声技术"},{"id":"530a5864-e17c-4bab-be92-d0e46a5579f7","keyword":"乙烯基酯树脂","originalKeyword":"乙烯基酯树脂"},{"id":"9848f9f4-202d-4ba3-b100-4e71bef7e09e","keyword":"玻璃纤维","originalKeyword":"玻璃纤维"},{"id":"f1e41a91-f466-4e31-8fcb-27099da6688f","keyword":"碳纤维","originalKeyword":"碳纤维"},{"id":"cd023d1a-509a-407c-9a51-38db33cc5bc6","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"baa54b61-215a-457b-8b10-47d3d8f8936c","keyword":"固化","originalKeyword":"固化"}],"language":"zh","publisherId":"fhclxb201001002","title":"超声波表征纤维增强树脂基复合材料固化行为","volume":"27","year":"2010"}],"totalpage":3908,"totalrecord":39075}