{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"改变体积及自由体积的线性混合规则,文中在Entropic-FV(EFV)模型中引入了可调参数,提出了修正EFV-λ模型.当λ=1时修正模型复原至EFV方程.与其它以基团贡献法为基础的热力学模型U-NIFAC-FV、EFV和EFV-1.2同时计算甲醇、乙醇、苯等溶剂与PDMS、PS、PIB等聚合物组成的聚合物溶液体系的溶剂活度,并与实验数据进行比较,平均偏差分别为6.24%、9.30%、7.56%和8.82%.结果表明,EFV模型在多数体系中优于UNIFAC-FV模型.对15种体系预测结果显示EFV-λ(λ=0.95)总体平均偏差最小.","authors":[{"authorName":"程振锋","id":"4e8d262d-4d2f-45d1-a396-8e1757e6e785","originalAuthorName":"程振锋"},{"authorName":"刘庆林","id":"dc555237-c86d-4886-a01b-65297537b7f8","originalAuthorName":"刘庆林"}],"doi":"","fpage":"10","id":"21349306-697c-420a-959b-ad42b397dece","issue":"6","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"38da8baf-d0c0-42b0-95fd-701fdb52b0c5","keyword":"Entropic-FV模型","originalKeyword":"Entropic-FV模型"},{"id":"94e47665-1c23-43f5-a846-0c080424cbdd","keyword":"组分活度","originalKeyword":"组分活度"},{"id":"7f128085-dd2e-4d18-890f-1a2f2540168b","keyword":"聚合物溶液","originalKeyword":"聚合物溶液"},{"id":"5db3939e-d85a-4f90-b06d-7588a094b59a","keyword":"UMFAC-FV模型","originalKeyword":"UMFAC-FV模型"}],"language":"zh","publisherId":"gfzclkxygc200606003","title":"Entropic-FV及其修正模型预测聚合物溶液中溶剂活度","volume":"22","year":"2006"},{"abstractinfo":"针对多孔介质中聚合物溶液的粘弹特性难描述的问题,通过对其在多孔介质中流动特征的分析,提出将粘弹性流体在孔喉模型中流动过程分为入口收敛阶段、通过孔喉阶段和挤出孔喉阶段,并将各个阶段压降分解为粘性耗散压降和弹性拉伸压降.通过张量分析的方法,综合考虑了聚合物溶液的假塑性、弹性和弹性回复特性以及多孔介质的孔喉比和孔隙因子(喉道长度与喉道直径之比)等因素,推导了各个阶段的粘性耗散压降和弹性拉伸压降的表达式,建立了粘弹性聚合物溶液通过孔喉模型的压降数学模型.实例计算结果表明,建立粘弹性本构模型时,必须考虑通过孔喉阶段和挤出孔喉阶段以及弹性流体的弹性回复;弹性特性是造成压降损失的影响因素,在聚驱过程中不可忽略.","authors":[{"authorName":"曹仁义","id":"0090e855-146b-41c1-98ef-cc4c2fada7b3","originalAuthorName":"曹仁义"},{"authorName":"程林松","id":"0bacf197-d56c-49a9-ba4f-7d8dd2b0f24f","originalAuthorName":"程林松"},{"authorName":"郝炳英","id":"efa0a7ce-f0a7-476e-b1a5-51acbf5d70cb","originalAuthorName":"郝炳英"},{"authorName":"许家峰","id":"f63bbd3f-73e7-4a0d-9504-c94a80d126d1","originalAuthorName":"许家峰"},{"authorName":"姚大伟","id":"bd944df7-345d-4972-b472-395aa4f8c3e0","originalAuthorName":"姚大伟"}],"doi":"","fpage":"15","id":"1d35ccb3-baf4-4c26-ba45-1ab1124ca8d3","issue":"3","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"6ae95c52-526c-474f-a12a-487151642564","keyword":"聚合物溶液","originalKeyword":"聚合物溶液"},{"id":"d50bac92-9506-44e2-bc2b-3e3d3a510f81","keyword":"流变性","originalKeyword":"流变性"},{"id":"b3fb4aec-83a4-4d18-bb7a-4df0a98e8899","keyword":"粘弹性","originalKeyword":"粘弹性"},{"id":"af28ac7e-c580-4140-aba8-7da4904cc3dd","keyword":"孔喉模型","originalKeyword":"孔喉模型"},{"id":"70624b96-36bd-4548-8ea8-524424419829","keyword":"压降损失","originalKeyword":"压降损失"},{"id":"a3e7aa59-942a-46da-9f54-5223216ba44f","keyword":"数学模型","originalKeyword":"数学模型"}],"language":"zh","publisherId":"gfzclkxygc200803004","title":"粘弹性聚合物溶液孔喉模型流变动力分析","volume":"24","year":"2008"},{"abstractinfo":"采用溶液聚合法合成邻甲基苯胺聚合物(POT) ,由于甲基的空间位阻效应大于其给电子效应,不利于获得高分子量聚合物,从讨论引发剂用量对聚合反应的影响,得出可获得数均分子量为1.90×103的POT的聚合条件:反应温度为0 ℃,pH≤1,[M]=1.554 mol/L,[KPS]/[M]=1∶1(摩尔比),反应时间 24.0 h.1H-NMR和FT-IR分析结果表明,POT聚合物链为半氧化还原结构emeraldine ,结构单元中苯醌比为3∶1.","authors":[{"authorName":"许一婷","id":"4b527c26-da7f-4a0a-aaf8-6048fb3f00b9","originalAuthorName":"许一婷"},{"authorName":"宋晓晖","id":"1064d2db-a052-4063-9f68-a859c5d7959c","originalAuthorName":"宋晓晖"},{"authorName":"何云游","id":"fd5ad621-b0dd-418e-9136-8bb0d96ede83","originalAuthorName":"何云游"},{"authorName":"戴李宗","id":"80136def-1a6e-4c8e-8d04-476a13a4dd78","originalAuthorName":"戴李宗"},{"authorName":"邹友思","id":"f1064b61-bed8-4192-8f23-8e28abe981ef","originalAuthorName":"邹友思"},{"authorName":"吴辉煌","id":"e42d250a-06c7-403f-bdad-353ffe9f19a2","originalAuthorName":"吴辉煌"},{"authorName":"","id":"8392f754-e120-41e9-9473-afb3bb9f47d7","originalAuthorName":""}],"doi":"","fpage":"153","id":"0ea935f4-c41a-4fc1-9e5e-21b55f1b838e","issue":"1","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"af82cf29-3d8d-4ed9-955c-c0b053dfc618","keyword":"聚邻甲苯胺","originalKeyword":"聚邻甲苯胺"},{"id":"393cdb5e-d653-4bc1-b29d-aa5059ea78ff","keyword":"溶液聚合","originalKeyword":"溶液聚合"},{"id":"9b40fc29-4330-4a3a-849b-9c564f6ff770","keyword":"分子结构","originalKeyword":"分子结构"}],"language":"zh","publisherId":"gfzclkxygc200201038","title":"邻甲苯胺的溶液聚合聚合物链结构的表征","volume":"18","year":"2002"},{"abstractinfo":"由丙烯酰胺和N-苯基对烷基丙烯酰胺采用水溶液自由基胶束聚合法合成疏水缔合聚合物PBAM.研究了共聚浓度、盐浓度、温度及表面活性剂浓度对共聚溶液粘度的影响.结果表明,当聚合物的浓度大于临界缔合浓度时溶液的粘度急剧增加;NaCl的加入使得溶液的粘度下降,但适当结构的聚合物表现出较好的抗盐能力;聚合物浓度恒定时,溶液粘度随表面活性剂SDS浓度的增加急剧增加,达到最大值后迅速下降.聚合物溶液的流变行为呈现牛顿流体的性质.","authors":[{"authorName":"马俊涛","id":"24edf96b-2dd2-49b8-b169-01ee8c22c714","originalAuthorName":"马俊涛"},{"authorName":"崔平","id":"79f667cb-f1fd-4052-b6bc-9afc51a02687","originalAuthorName":"崔平"},{"authorName":"黄荣华","id":"6743e3c4-0935-401c-989a-eaa0744277f1","originalAuthorName":"黄荣华"},{"authorName":"代华","id":"ec693d60-049e-40e3-a7d4-089a2d46473b","originalAuthorName":"代华"}],"doi":"","fpage":"136","id":"2e6b4224-904a-4b02-a577-0912e8329c44","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"f10985d5-17eb-4724-8c1f-cea243e5be14","keyword":"水溶性疏水缔合聚合物","originalKeyword":"水溶性疏水缔合聚合物"},{"id":"c707ee09-d1ea-4b2a-9c73-663338575564","keyword":"表观粘度","originalKeyword":"表观粘度"},{"id":"5211a7e0-e67f-43e7-93c2-6b93273c6939","keyword":"抗盐性","originalKeyword":"抗盐性"},{"id":"77857297-7a02-4931-ac23-56ba10a62ae5","keyword":"表面活性剂","originalKeyword":"表面活性剂"},{"id":"affa749a-0f81-4fcf-8a31-1da74557e7a4","keyword":"流变性","originalKeyword":"流变性"}],"language":"zh","publisherId":"gfzclkxygc200405034","title":"非离子型疏水缔合聚合物PBAM的溶液性能","volume":"20","year":"2004"},{"abstractinfo":"交联聚合物溶液是由低浓度部分水解聚丙烯酰胺(HPAM)和交联剂柠檬酸铝(AlCit)形成的交联聚合物线团在水中的分散体.采用毛玻璃模型和并联岩心实验对交联聚合物溶液的封堵机理进行了研究.结果表明,交联聚合物溶液的封堵性能与多孔介质表面的特性是密切相关的,交联聚合物线团与水润湿多孔介质表面的相互作用力较强,易于在多孔介质喉道处吸附、滞留、聚集,形成较高强度封堵;对于油润湿多孔介质,交联聚合物线团难以在喉道处滞留形成封堵; 交联聚合物溶液在驱替过程中,聚合物、柠檬酸铝和交联聚合物线团的吸附都不是平衡吸附,在近井地带的吸附滞留量小于远井地带,产生架桥封堵的可能小,因此交联聚合物溶液能够深入地层深部产生深部调剖效果.","authors":[{"authorName":"孙志斌","id":"a7d3bdb5-1329-4189-a7ea-6ba2c794bd79","originalAuthorName":"孙志斌"},{"authorName":"郑延欣","id":"c5b961b5-9a3d-49fb-b9f4-c0903e2a16e8","originalAuthorName":"郑延欣"},{"authorName":"李明远","id":"7a5121b1-4ebc-4076-ab95-1efc121f61c4","originalAuthorName":"李明远"},{"authorName":"林梅钦","id":"32887f05-8ea6-4d9a-8950-09c2e29fed20","originalAuthorName":"林梅钦"},{"authorName":"吴肇亮","id":"98fab19e-6fa9-4bf1-9044-c616a454b0c2","originalAuthorName":"吴肇亮"}],"doi":"","fpage":"225","id":"8ff8ed07-e42d-4ae3-bc83-a19812073f17","issue":"2","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"a9cafa4c-2077-4095-8c18-7f681832908b","keyword":"交联聚合物溶液","originalKeyword":"交联聚合物溶液"},{"id":"5887dc8c-4776-43c3-b512-31027f7659a0","keyword":"毛玻璃模型","originalKeyword":"毛玻璃模型"},{"id":"5764ef1d-cbb2-4db1-afa6-1806f3ad5e15","keyword":"润湿性","originalKeyword":"润湿性"},{"id":"de4c558c-a39c-4d37-980d-97e19fbc4806","keyword":"封堵机理","originalKeyword":"封堵机理"}],"language":"zh","publisherId":"gfzclkxygc200502056","title":"交联聚合物溶液封堵多孔介质机理研究","volume":"21","year":"2005"},{"abstractinfo":"将原子转移自由基聚合(ATRP)和自缩合乙烯基聚合(SCVP)结合,以p-CMS为引发单体进行ATRP溶液聚合,得到高支化的聚对氯甲基苯乙烯PCMS.研究了采用不同溶剂时,各种因素对聚合物PCMS组成和结构的影响,讨论了产生这些影响的可能原因.","authors":[{"authorName":"陈欢","id":"9554ce36-494f-48fb-ba6a-223e4eb591c8","originalAuthorName":"陈欢"},{"authorName":"王国建","id":"8a61dfbc-ed81-47bb-b03d-088884bdec76","originalAuthorName":"王国建"}],"doi":"","fpage":"63","id":"2f96d10e-6b6f-466a-a8e4-0a5ca0062bc2","issue":"4","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"5e32175a-96da-4a94-93d9-dcef0afe12f0","keyword":"高支化聚合物","originalKeyword":"高支化聚合物"},{"id":"5f311f0f-9a17-4990-9594-04c040d24813","keyword":"对氯甲基苯乙烯","originalKeyword":"对氯甲基苯乙烯"},{"id":"feb8fdb9-607e-471e-bd8e-e44b4cbb0321","keyword":"原子转移自由基聚合","originalKeyword":"原子转移自由基聚合"},{"id":"dd2a9b48-d338-4866-b112-4c1ba3f27b0e","keyword":"自缩合乙烯基聚合","originalKeyword":"自缩合乙烯基聚合"},{"id":"fe216ffc-5787-41ff-bd97-22c06620bd6d","keyword":"引发单体","originalKeyword":"引发单体"}],"language":"zh","publisherId":"gfzclkxygc200504015","title":"PCMS高支化聚合物制备中的若干理论问题探讨--(Ⅱ)ATRP溶液聚合聚合条件对聚合物的影响","volume":"21","year":"2005"},{"abstractinfo":"采用反相气相色谱法测定了溶剂/PET在不同温度下无限稀溶剂活度系数和Flory-huggins相互作用参数.应用UNIFAC-FV、GK-FV和Elbro-FV模型对溶剂/PET体系中以质量分率表示的无限稀释活度系数进行了估算.结果表明,UNIFAC-FV模型能相对较好地预测溶剂/PET体系中溶剂的无限稀释活度系数.","authors":[{"authorName":"敬波","id":"0c498776-34ea-4b7f-b569-9e55c73aa137","originalAuthorName":"敬波"},{"authorName":"谢建军","id":"231d2aa3-bc04-4013-94d9-dd5ae4196951","originalAuthorName":"谢建军"},{"authorName":"梁吉福","id":"a5cc67ef-b992-43e8-9d76-acd0801828a0","originalAuthorName":"梁吉福"},{"authorName":"刘新容","id":"720c7a9f-a115-4ad8-afe9-863bfe22aab2","originalAuthorName":"刘新容"}],"doi":"","fpage":"171","id":"ddecd6ac-7cdd-43b9-8400-94f09b7b95a5","issue":"5","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"69b60c5d-9c6f-47c4-ad1f-cbf892fc481e","keyword":"聚合物溶液","originalKeyword":"聚合物溶液"},{"id":"5bd44d42-6dc3-4636-a746-a1de3b960509","keyword":"气液平衡","originalKeyword":"气液平衡"},{"id":"a1b26eb0-9723-4ca2-9d9c-bb24e1b8efac","keyword":"反相气相色谱法","originalKeyword":"反相气相色谱法"},{"id":"d647f84a-839d-436b-af5d-eda7e54ae4c8","keyword":"活度系数","originalKeyword":"活度系数"},{"id":"cffbc7c8-3b3d-48e3-82cd-7d3f1cf52ad4","keyword":"Flory-huggins相互作用参数","originalKeyword":"Flory-huggins相互作用参数"},{"id":"8227df4f-459d-45b2-b821-2ed20c6afd3f","keyword":"模拟","originalKeyword":"模拟"}],"language":"zh","publisherId":"gfzclkxygc200505044","title":"溶剂/PET体系气液平衡研究","volume":"21","year":"2005"},{"abstractinfo":"由丙烯酰胺、丙烯酸钠和氯化十八烷基二甲基烯丙基铵(MJ-18)共聚合成了疏水缔合水溶性聚合物HAWP-18.对共聚浓度、盐浓度、温度及表面活性剂浓度对共聚溶液性能的影响进行了研究.结果表明,聚合物质量分数大于临界缔合浓度(0.20%)时,溶液粘度急剧增大;NaCl的加入使聚合物溶液粘度急剧降低,而亚浓溶液粘度却增大,CaCl2的加入使聚合物溶液表观粘度先急剧增大后迅速降低;聚合物浓度恒定时,溶液粘度随表面活性剂SDS浓度的增大而增大,达到最大值后,迅速下降.","authors":[{"authorName":"李林辉","id":"8788101f-f981-4600-ae50-4ae6f0e3853e","originalAuthorName":"李林辉"},{"authorName":"郭拥军","id":"af79eb38-7de1-4098-9e05-5415a610832f","originalAuthorName":"郭拥军"},{"authorName":"罗平亚","id":"447fbe10-2ccc-4058-a1fc-efbf79ea5637","originalAuthorName":"罗平亚"},{"authorName":"刘俊","id":"e6842ccb-f85b-4e4b-b01c-4de2cd47f2bc","originalAuthorName":"刘俊"},{"authorName":"徐春梅","id":"dfabb601-e3bf-4094-931f-c82cdc81799b","originalAuthorName":"徐春梅"}],"doi":"10.3969/j.issn.1000-0518.2003.11.007","fpage":"1048","id":"fab6bec2-9d29-41a7-b8c8-1abd758e0781","issue":"11","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"00d6d249-2883-498f-a34e-5a8d5f55039f","keyword":"疏水缔合水溶性聚合物","originalKeyword":"疏水缔合水溶性聚合物"},{"id":"3e4d3900-4d22-4438-92c8-5ea797789f29","keyword":"疏水缔合","originalKeyword":"疏水缔合"},{"id":"d8eec179-09fd-4284-aa38-382d5db1a952","keyword":"粘度","originalKeyword":"粘度"},{"id":"412ec3a6-afa3-47ae-84ee-0512b2f2190d","keyword":"抗盐性","originalKeyword":"抗盐性"},{"id":"85a72af3-a59f-47d5-a902-ddebaca213f1","keyword":"表面活性剂","originalKeyword":"表面活性剂"}],"language":"zh","publisherId":"yyhx200311007","title":"一种疏水缔合水溶性聚合物的合成及其溶液性能","volume":"20","year":"2003"},{"abstractinfo":"使用2-氧丙酰氯对第四代聚丙烯亚胺树枝状大分子(DAB-32)进行改性,成功合成了树枝状大分子引发荆DAB-32-Cl,并使用红外光谱(FT-IR)、核磁共振光谱(~1H-NMR)对引发荆的结构进行了表征.以此引发荆,CuCl/Bpy为催化剂,成功实现了丙烯酸(AA)和苯乙烯(St)的原子转移自由基(ATRP)溶液聚合,制备出树枝状大分子/聚丙烯酸和树枝状大分子/聚苯乙烯纳米粒子.采用光子相关光谱(PCS)和透射电子显微镜(TEM)对聚合物纳米粒子的形貌、粒径和粒径分布进行了表征,结果表明,合成的聚合物纳米粒子大小均一,小于121nm,分散性较好.","authors":[{"authorName":"刘虎","id":"b9bcb13c-1c2b-4355-af94-d3a47a3abfc5","originalAuthorName":"刘虎"},{"authorName":"朱严瑾","id":"27278bb4-a251-4445-a847-1c1fcbd960da","originalAuthorName":"朱严瑾"},{"authorName":"易昌凤","id":"c70edcd4-29ed-44f4-aca4-5a8ae7edced1","originalAuthorName":"易昌凤"},{"authorName":"徐祖顺","id":"caa19b1d-ab1c-4134-9b57-6c3f1b2d2c82","originalAuthorName":"徐祖顺"}],"doi":"","fpage":"19","id":"11ea2a52-d1bd-4377-9653-aee817ef9aa6","issue":"11","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"fce4db92-6c80-4be3-bcef-b26852659220","keyword":"原子转移自由基聚合","originalKeyword":"原子转移自由基聚合"},{"id":"2aa37b24-11c3-400a-a7fc-18cc2828daf8","keyword":"树枝状大分子","originalKeyword":"树枝状大分子"},{"id":"9754b9a7-9416-4512-ada1-8dc8ac4b6033","keyword":"聚合物纳米粒子","originalKeyword":"聚合物纳米粒子"}],"language":"zh","publisherId":"gfzclkxygc200911006","title":"原子转移自由基溶液聚合制备聚合物纳米粒子","volume":"25","year":"2009"},{"abstractinfo":"应用黏度法研究了新型缔合聚合物P(AM/AA/POEA)的溶液流变性质.该聚合物由丙烯酰胺(AM)、丙烯酸(AA)和少量2-苯氧乙基丙烯酸酯(POEA)组成.结果表明,共聚中疏水嵌段的数量、长度和离子基团含量对溶液流变性质有重要影响,这种离子型聚合物溶液性质同时受疏水基团的缔合作用和离子基团间的静电排斥作用的共同影响.同时进一步研究了聚合物浓度和pH值对溶液黏度的影响.研究结果表明,这类聚合物在较宽pH值范围黏度较高,说明在实际应用中可操作的范围较宽.","authors":[{"authorName":"戴玉华","id":"4d5a55b8-0493-4f6a-af60-bb32e88b2ad0","originalAuthorName":"戴玉华"},{"authorName":"万杰","id":"9e0164dd-f446-4b56-8369-ec4d0a720155","originalAuthorName":"万杰"}],"doi":"","fpage":"85","id":"b97eabde-5ccb-4907-9cb9-5d6756a69e5d","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"83c365db-f409-4019-b8a0-33ac3ab99803","keyword":"疏水缔合","originalKeyword":"疏水缔合"},{"id":"1f98ba9b-f27b-4b16-a409-e2f5b652556c","keyword":"共聚P(AM/AA/POEA)","originalKeyword":"共聚物P(AM/AA/POEA)"},{"id":"48067e8f-fc1c-4b43-935f-3def0de321af","keyword":"黏度","originalKeyword":"黏度"}],"language":"zh","publisherId":"gfzclkxygc201010022","title":"疏水改性聚合物P(AM/AA/POEA)的溶液性质","volume":"26","year":"2010"}],"totalpage":5443,"totalrecord":54427}