{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用改进的两步还原法制备了SiO2负载的Au-Ni合金催化剂,催化剂中Au-Ni纳米颗粒高度分散于SiO2载体表面. Au-Ni合金催化剂在温和条件下芳香硝基化合物选择加氢反应中表现出比两种单金属催化剂更高的活性和选择性,体现出Au-Ni之间明显的协同作用.其中AuNi3/SiO2催化剂具有最好的性能,反应70 min,转化率和选择性分别达到90.8%和93.0%.","authors":[{"authorName":"海生","id":"c8aaf580-f0a2-4a47-bb68-0f2bf2d49a25","originalAuthorName":"魏海生"},{"authorName":"卫星","id":"fa4de0b2-75ef-44f5-a6ec-1557aae10e35","originalAuthorName":"卫星"},{"authorName":"杨小峰","id":"74cb4a00-5302-4d1f-acff-7c8c2563c3f3","originalAuthorName":"杨小峰"},{"authorName":"银光照","id":"bf2390aa-5c54-4a79-b070-254e11778a45","originalAuthorName":"银光照"},{"authorName":"王爱琴","id":"89f6877b-9877-48ee-aa15-e12fa094c6f3","originalAuthorName":"王爱琴"},{"authorName":"刘晓艳","id":"1b015063-1f09-448b-986a-a24c9305bcf3","originalAuthorName":"刘晓艳"},{"authorName":"黄延强","id":"eed8e128-7b05-4f0e-8dba-12a144ff2cdb","originalAuthorName":"黄延强"},{"authorName":"张涛","id":"a11cd214-9efe-42f6-b8f5-f3e43a7c006f","originalAuthorName":"张涛"}],"doi":"10.1016/S1872-2067(14)60254-0","fpage":"160","id":"20a23364-fa12-4d20-b121-99d36d9b5b7b","issue":"2","journal":{"abbrevTitle":"CHXB","coverImgSrc":"journal/img/cover/CHXB.jpg","id":"18","issnPpub":"0253-9837","publisherId":"CHXB","title":"催化学报 "},"keywords":[{"id":"06521e96-ae60-41b8-90db-601c412ab43a","keyword":"金-镍","originalKeyword":"金-镍"},{"id":"fced1f0b-ba15-40ca-818b-08c6dce30ef6","keyword":"合金","originalKeyword":"合金"},{"id":"08c9c3d5-e22f-4f2e-b19f-fc4e0e5193da","keyword":"选择加氢","originalKeyword":"选择加氢"},{"id":"85573318-b10b-43a3-b9b6-21f5e9107136","keyword":"芳香硝基化合物","originalKeyword":"芳香硝基化合物"}],"language":"zh","publisherId":"cuihuaxb201502005","title":"负载型Au-Ni合金催化剂应用于芳香硝基化合物选择加氢反应","volume":"","year":"2015"},{"abstractinfo":"防海生物涂料的发明对人类更好地利用海洋有着积极的作用,随着科技的不断进步,防海生物的产品也在不断更新中.阐述了国际防海生物生长的涂料的作用机理和硅烷涂料、聚碳/聚碳酸酯材料、磷酸锌材料、氯化橡胶材料、聚脲材料的应用及特征.","authors":[{"authorName":"王广成","id":"ddfcc530-2931-47ea-99a2-09c06d946062","originalAuthorName":"王广成"},{"authorName":"王晨","id":"a42b7944-7b34-4f09-8b36-4a85fe6325b8","originalAuthorName":"王晨"}],"doi":"","fpage":"273","id":"85730215-df6b-4a7c-8107-57aa8fb0dd83","issue":"z1","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"60d02c02-43ee-4662-9f8d-d1cd68d578a8","keyword":"防污涂料","originalKeyword":"防污涂料"},{"id":"8b492ce6-27ef-42ed-9d41-78434d6026cb","keyword":"无锡自抛光","originalKeyword":"无锡自抛光"},{"id":"79201920-cac4-4d92-bd99-1cde5a71eb54","keyword":"低表面能","originalKeyword":"低表面能"}],"language":"zh","publisherId":"cldb2013z1078","title":"防海生物涂料发展综述","volume":"27","year":"2013"},{"abstractinfo":"舰船长期在海洋中行驶,受到海洋生物的污损,会增加舰船航行的阻力,增加燃油消耗.本文介绍了海生物附着特点和机理以及防海生物污损材料的研究现状.低表面能涂料是当前广泛使用的防污材料,其利用自身表面能低的性质使海生物在舰船上的粘附力下降,进而达到防污损目的.超疏水材料和仿生材料在自清洁、防腐蚀等方面所展示的独特性能,已成为防污损材料领域的研究热点.在综述分析防污材料研究现状的基础上,针对存在的问题和不足,提出了防污损材料今后研究发展方向.","authors":[{"authorName":"柏芳","id":"7d67b4b0-aa47-4622-b7cf-2c1ce3a79b25","originalAuthorName":"柏芳"},{"authorName":"王泽华","id":"0353379c-f199-47e9-a2db-c8042043cee1","originalAuthorName":"王泽华"},{"authorName":"王国伟","id":"ff0518e8-555d-4662-bf03-5210312191fa","originalAuthorName":"王国伟"},{"authorName":"周泽华","id":"39eed713-c50f-4d98-a09c-299b0486f51e","originalAuthorName":"周泽华"},{"authorName":"江少群","id":"6dd60667-4aca-4ddb-91fb-16c95c7a8729","originalAuthorName":"江少群"}],"doi":"","fpage":"420","id":"3fd3e42b-a0a9-476d-857c-642c357ee363","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"9683e998-6e1f-442c-975b-93f69b586bde","keyword":"防污","originalKeyword":"防污"},{"id":"6f159ee3-95a5-4285-afc7-30938f639cbb","keyword":"低表面能","originalKeyword":"低表面能"},{"id":"d43c0403-8262-489c-a341-c0627f71fec7","keyword":"超疏水","originalKeyword":"超疏水"},{"id":"df97f32f-f870-4890-a75b-47cb0b6558ad","keyword":"仿生材料","originalKeyword":"仿生材料"}],"language":"zh","publisherId":"fsyfh201405004","title":"防海生物污损材料研究现状","volume":"35","year":"2014"},{"abstractinfo":"钛合金具有低密度、高强度、耐海水腐蚀等优异的性能,被人们誉为“海洋金属”.然而,由于钛合金具有良好的生物相容性,海生物污损也因此成为钛合金在海洋工程中应用所面临的最大问题.为此,主要从海生物对钛合金的危害以及钛合金表面海生物的防护方法两方面论述了相关研究现状,并指出钛合金表面防污技术的发展方向是:①建立“药剂”注入、防污监测和反馈等自动管理系统;②研究实用的电解制臭氧装置;③研究物理、化学等多种防污复合技术;④研究生物防污方法.","authors":[{"authorName":"李争显","id":"77ed1e6a-173f-4454-b23f-a81d7da8573d","originalAuthorName":"李争显"},{"authorName":"王浩楠","id":"34837f05-fe42-4f1d-935c-2387a97d0a6b","originalAuthorName":"王浩楠"},{"authorName":"赵文","id":"c6377e12-50a6-438d-ac41-4ffc85c9b035","originalAuthorName":"赵文"}],"doi":"","fpage":"1","id":"ff0a4c05-2e9c-48ad-9af3-de01c82cbb03","issue":"6","journal":{"abbrevTitle":"TGYJZ","coverImgSrc":"journal/img/cover/TGYJZ.jpg","id":"60","issnPpub":"1009-9964","publisherId":"TGYJZ","title":"钛工业进展"},"keywords":[{"id":"a3425b68-a932-4ba9-8ff4-82c3a762985d","keyword":"钛合金","originalKeyword":"钛合金"},{"id":"3672bace-9488-41a0-844e-33905c4a14ac","keyword":"海生物污损","originalKeyword":"海生物污损"},{"id":"655fc721-4402-4e66-b31d-58715eaaecc2","keyword":"防护技术","originalKeyword":"防护技术"}],"language":"zh","publisherId":"tgyjz201506001","title":"钛合金表面海生物污损及防护技术的研究现状和发展趋势","volume":"32","year":"2015"},{"abstractinfo":"研究了45Mn2钢氏组织对其力学性能的影响.结果表明,一定量的氏组织有利于提高其强韧性.","authors":[{"authorName":"钟长文","id":"62a16d0c-647d-4cd1-95c5-e9a0024bb029","originalAuthorName":"钟长文"},{"authorName":"刘建华","id":"65af211a-2b3a-4d98-bb14-ae0cd3fbf4d5","originalAuthorName":"刘建华"}],"doi":"10.3969/j.issn.1001-0777.2002.03.001","fpage":"1","id":"18b0cbfb-b0d9-411b-a60d-94b38294e6bf","issue":"3","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"afb278f0-6870-4db2-995e-06fbac281ece","keyword":"45Mn2钢","originalKeyword":"45Mn2钢"},{"id":"89737183-39e7-4780-b887-349bf67b57c8","keyword":"氏组织","originalKeyword":"魏氏组织"},{"id":"f2acd931-7e20-4358-a158-e22dadf7929c","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"wlcs200203001","title":"45Mn2钢氏组织对其力学性能的影响","volume":"","year":"2002"},{"abstractinfo":"用扫描隧道显微镜(STM)观察了Fe-0.37C(质量分数,%)合金中氏组织铁素体的表面浮突,发现其浮突形状为帐篷型和复杂形态.切变机制不能解释氏组织表面浮突的形成过程,而扩散控制的台阶机制可合理地解释.氏组织的浮突高度为70—450nm,最大形状变形约0.36.","authors":[{"authorName":"薄祥正","id":"beaa42e9-dc0e-42f9-8a34-38fef2f47bc0","originalAuthorName":"薄祥正"},{"authorName":"方鸿生","id":"16034f00-e8d6-4d86-9f9e-b9c1b34d148b","originalAuthorName":"方鸿生"},{"authorName":"王家军","id":"1aaa85d3-c77a-402b-adc8-ea11a9f782eb","originalAuthorName":"王家军"},{"authorName":"王峥华","id":"83fd7fe5-0e2f-4c92-b887-907e3b37c8e2","originalAuthorName":"王峥华"}],"categoryName":"|","doi":"","fpage":"345","id":"17606cac-47f6-4a25-bb8b-33ab41ad3402","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"333be36e-8063-45f3-88ec-d320451b4720","keyword":"表面浮凸","originalKeyword":"表面浮凸"},{"id":"1a353ff0-f6bd-4c79-80c9-cd059e832cde","keyword":" Widmanstatten ferrite","originalKeyword":" Widmanstatten ferrite"},{"id":"1ae96154-0cf9-4d1e-8212-bff6ee843aa8","keyword":" scanning tunneling microscopy","originalKeyword":" scanning tunneling microscopy"},{"id":"05b95277-919a-400c-9769-09973ad81bbf","keyword":" shapede formation","originalKeyword":" shapede formation"}],"language":"zh","publisherId":"0412-1961_1998_4_6","title":"氏组织表面浮突的扫描隧道显微镜研究","volume":"34","year":"1998"},{"abstractinfo":"<正> 一般认为亚共析钢中氏组织降低机械性能,尤其是不利于冲击韧性。近年来研究结果则认为氏组织可以提高机械性能,也有人认为具有氏组织的亚共析钢,由于冷却速度快,增加了珠光体量,细化了铁素体晶粒,从而抵销了针状铁素体的不良影响。另一些人指出切变机制使针状铁素体中有较高密度的位错和较细的亚结构,提高了钢的机械性能。本文根据对裂纹扩展行为的观察,探讨铁素体影响钢的机械性能的原因。 本实验采用25铸钢作试样,其化学成分(wt-%)为:C 0.28,Si 0.37,Mn 0.61,S","authors":[{"authorName":"刘继恒","id":"c3179369-e2c8-4945-954a-577a2237d0b3","originalAuthorName":"刘继恒"},{"authorName":"赵明","id":"de9e536d-6d85-4db6-b708-3f9966be2b8b","originalAuthorName":"赵明"},{"authorName":"钱得荣","id":"e4a6f421-07f1-4fc6-8a38-4e7a34adc788","originalAuthorName":"钱得荣"},{"authorName":"阎胡成","id":"0e99f566-f6e0-4749-bcdf-6af4454a71e9","originalAuthorName":"阎胡成"}],"categoryName":"|","doi":"","fpage":"92","id":"0222ca2e-fa27-4ae4-8bda-fea34ba27e9c","issue":"5","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[],"language":"zh","publisherId":"0412-1961_1986_5_5","title":"氏组织铁素体的亚结构及其对裂纹扩展的影响","volume":"22","year":"1986"},{"abstractinfo":"以提高氏体组织Ti60合金的拉伸强度与塑性为目标,研究固溶与时效处理对Ti60合金组织与性能演变的影响规律,并优化热处理参数.结果表明,初始氏组织晶粒较为粗大,经过固溶与时效处理后,晶粒明显减小,层片状α相明显减少.初始氏组织Ti60合金抗拉强度为850 MPa,伸长率为0.9%,1000℃固溶处理后,Ti60合金的抗拉强度达到1100 MPa,伸长率为3.7%.1000℃固溶+600℃8h时效处理后,抗拉强度达到1200 MPa,伸长率为3.3%.随固溶温度提高,其硬度与抗拉强度增加,伸长率降低.随时效时间延长,硬度先增大后减小.经1050℃固溶+600℃8 h时效处理后Ti60合金具有最大硬度值509 HV.","authors":[{"authorName":"戎旭东","id":"00e2c6cf-8ebd-4236-bb60-c083bcd4eb99","originalAuthorName":"戎旭东"},{"authorName":"黄陆军","id":"794ed4ef-eed8-4475-b58e-a300cf622c81","originalAuthorName":"黄陆军"},{"authorName":"王博","id":"7040e675-9c80-483b-af2f-2cb4474fc96e","originalAuthorName":"王博"},{"authorName":"唐骜","id":"6d8ec4ba-b4c6-41d1-b85b-b76b9864123e","originalAuthorName":"唐骜"},{"authorName":"耿林","id":"b9f5abbc-1007-4ee0-9971-8866850ef17c","originalAuthorName":"耿林"}],"doi":"","fpage":"39","id":"b48c7721-ea64-499f-a5fe-b3aac071a8f2","issue":"10","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"64128791-9e51-4d68-abb3-3c2c66d73ea4","keyword":"Ti60合金","originalKeyword":"Ti60合金"},{"id":"772dbb5f-8b5d-4de4-be64-5bc34e5d0365","keyword":"热处理","originalKeyword":"热处理"},{"id":"32e68aef-3437-4179-b2cc-2cf021e87867","keyword":"氏体组织","originalKeyword":"魏氏体组织"},{"id":"d0ce6237-e6e6-485d-bee5-9d03e6161a24","keyword":"拉伸性能","originalKeyword":"拉伸性能"}],"language":"zh","publisherId":"jsrclxb201510007","title":"热处理对氏组织Ti60合金组织与性能的影响","volume":"36","year":"2015"},{"abstractinfo":"以三种低碳合金钢的粗大氏组织为原始组织,分别以慢速、中速进行奥氏体化加热.晶粒度测试表明:慢速加热条件下出现组织遗传现象,中速加热时可细化晶粒.慢速加热奥氏体化过程中,观察到球状奥氏体和针状奥氏体.","authors":[{"authorName":"李智超","id":"e73b2b47-9e17-4dfd-814f-921ac81a4441","originalAuthorName":"李智超"},{"authorName":"马栓柱","id":"8fbbbb83-2208-4b2b-98ca-78e6a7444927","originalAuthorName":"马栓柱"},{"authorName":"杜素梅","id":"8716631a-5b5e-4bc5-9268-4301ce0b1092","originalAuthorName":"杜素梅"}],"doi":"10.3969/j.issn.1004-244X.2004.02.004","fpage":"12","id":"44de1e41-6719-4ef5-9b29-2e4baa38f234","issue":"2","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"caeb73e3-44fc-4e74-9e2e-eb59a9634085","keyword":"氏组织","originalKeyword":"魏氏组织"},{"id":"194384c6-f80f-4ba3-8dc6-c16746fda416","keyword":"组织遗传现象","originalKeyword":"组织遗传现象"},{"id":"68430359-742b-4a37-8a9c-2f98068df413","keyword":"针状奥氏体","originalKeyword":"针状奥氏体"}],"language":"zh","publisherId":"bqclkxygc200402004","title":"亚共析钢氏组织的组织遗传现象研究","volume":"27","year":"2004"},{"abstractinfo":"介绍了获得满足△g平行法则的位向关系、惯习面、正空赣 倒空间准不变应变线的计算方法, 解释了高锰钢中先共析氏组织渗大体在奥氏体晶内析出时的Pitsch和T-H的位向关系惯习面上的晶格匹配示意图.","authors":[{"authorName":"叶飞","id":"9bf1714f-eb82-4ba8-a310-12d4729a8645","originalAuthorName":"叶飞"},{"authorName":"张文征","id":"b91e893d-03d4-4e75-90c5-8910ae5b544a","originalAuthorName":"张文征"}],"categoryName":"|","doi":"","fpage":"673","id":"db8b265d-8c1c-45b7-8ada-62b2df3930cb","issue":"7","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"905f4013-0f27-43ba-b3bb-f081a00a388d","keyword":"△g平行法则","originalKeyword":"△g平行法则"},{"id":"62beb1ec-87d8-4f44-bca4-8c280c40d872","keyword":"null","originalKeyword":"null"},{"id":"e668e672-ea12-4e19-b86e-ce09d4353819","keyword":"null","originalKeyword":"null"}],"language":"zh","publisherId":"0412-1961_2000_7_15","title":"氏组织渗碳体与奥氏体的Pitsch和T—H位向关系","volume":"36","year":"2000"}],"totalpage":22,"totalrecord":211}