{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"综述了最近几年来在改进金属二次电池方面进行的研究.主要论述通过加入各种不同的添加剂如HF、CO2、无机离子、碘化物、有机物和表面活性剂来改善金属的表面和/或表面膜的结构,从而提高金属二次电池的电化学行为.同时对固态电解质和合金负极今后的研究方向进行了展望.","authors":[{"authorName":"吴宇平","id":"e8d38947-ee6d-429f-9911-c5b26f91ed40","originalAuthorName":"吴宇平"},{"authorName":"万春荣","id":"54c14dfc-12bb-45f6-80f7-91fae7a3c080","originalAuthorName":"万春荣"},{"authorName":"姜长印","id":"1ecbc0e6-8aeb-4574-b34b-e2251fb1f06a","originalAuthorName":"姜长印"},{"authorName":"李建军","id":"a0352ce7-2e4b-4470-af11-e65caba1ceac","originalAuthorName":"李建军"},{"authorName":"李阳兴","id":"98563005-48da-4d39-adb0-82fd5ff8b1cd","originalAuthorName":"李阳兴"}],"doi":"","fpage":"449","id":"1f41ec68-31b2-413f-b442-deb7fc0bca2c","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"540a86f2-cfd1-42ed-bdde-5463175021d2","keyword":"金属","originalKeyword":"金属锂"},{"id":"c6899e59-6a03-4571-bfcc-b48168d23e1b","keyword":"二次电池","originalKeyword":"二次电池"},{"id":"a324b3d0-535c-4bb3-9987-8ba5a46b5be0","keyword":"添加剂","originalKeyword":"添加剂"},{"id":"357a5f4b-8b6c-4d06-8f6b-87728cdc3d0d","keyword":"改进","originalKeyword":"改进"}],"language":"zh","publisherId":"gncl200005001","title":"金属二次电池的研究进展","volume":"31","year":"2000"},{"abstractinfo":"953 K下,在LiCl-LiF-Li2CO3纯盐体系中,采用电化学手段(循环伏安法,计时电流法)研究了熔盐电解碳酸制备金属的电极过程,重点分析了的还原机制和碳酸根离子的放电行为.研究表明,金属在钨电极上的还原是锂离子一步得电子的可逆反应过程,在氯气析出峰前的氧化峰为碳酸在电场作用下分解为二氧化碳和氧化锂,氧化锂中的氧离子放电生成氧气所致,电场的作用促进了碳酸的分解.计时电流表明锂离子的沉积速率受扩散控制,经计算锂离子在熔盐中扩散系数为1.35×10-8 cm2·s-1,成核过程是半球形三维瞬时成核.碳酸的加入比传统的以LiCl为原料熔盐电解法制备金属或者合金实际分解电压低0.5V,从而降低了电解过程电压,较少了能源消耗;使用碳酸作原料熔盐电解法制备金属不仅减少了环境污染还降低了的生产成本.","authors":[{"authorName":"张保国","id":"dd0ab41d-4653-4128-ac13-0265ddd3dd6d","originalAuthorName":"张保国"},{"authorName":"李继东","id":"fa09ee3a-7708-4fd1-93e4-088552609111","originalAuthorName":"李继东"},{"authorName":"赫婷婷","id":"921887a3-49f4-44bb-9df1-8e668a43dd6b","originalAuthorName":"赫婷婷"},{"authorName":"王一雍","id":"3dafc875-1623-42f5-8e6e-171802475a19","originalAuthorName":"王一雍"}],"doi":"10.13373/j.cnki.cjrm.2016.05.011","fpage":"473","id":"c81f0627-a2ef-433c-aa72-ea9a5e18dc6b","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"a75a879e-f619-4cd3-b32a-e23f7068cfa7","keyword":"Li2CO3","originalKeyword":"Li2CO3"},{"id":"8f185464-2eea-4941-8bf5-5caf114d1983","keyword":"金属","originalKeyword":"金属锂"},{"id":"c8815eb7-ba8c-4450-bb3e-395589abbd66","keyword":"还原机制","originalKeyword":"还原机制"},{"id":"57e8b50b-feda-459b-8849-2b718504833c","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"371db60f-a54f-42a3-b01d-2615a332b4ad","keyword":"熔盐电解","originalKeyword":"熔盐电解"}],"language":"zh","publisherId":"xyjs201605011","title":"以Li2CO3为原料制备金属过程的电化学还原机制","volume":"40","year":"2016"},{"abstractinfo":"着重介绍了高纯金属工业试验流程、真空蒸馏法提纯的原理和连续式真空蒸馏炉的特点,并根据工业试验结果讨论了的蒸发速度和设备产能、工业试验产品高纯的质量以及金属回收率等问题.试验结果表明,设备能耗低, 750℃时蒸馏纯度99.9%以上,产能达15 t/a.","authors":[{"authorName":"兰海苍","id":"8e2e32c1-1766-4414-8019-df85ee84a681","originalAuthorName":"兰海苍"},{"authorName":"赵炜","id":"eeaa0e8c-7001-4f46-aa43-172db55f4588","originalAuthorName":"赵炜"},{"authorName":"胡初潜","id":"5b352bb8-ff43-4709-ac0b-0e73dbbb640e","originalAuthorName":"胡初潜"},{"authorName":"贾玉兰","id":"9a96cad3-d51f-4cd4-92d2-d6b66fbdf514","originalAuthorName":"贾玉兰"},{"authorName":"胡洪波","id":"c64989a8-593a-41f5-9f37-f4dd3633a0f8","originalAuthorName":"胡洪波"}],"doi":"10.3969/j.issn.0258-7076.1998.04.011","fpage":"286","id":"91eeffd2-a30c-476a-b965-cc91f533eaf0","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"a13fc17e-e46f-44be-a9fe-72944f3c32db","keyword":"蒸馏","originalKeyword":"蒸馏"},{"id":"63f1cc09-8e20-43a0-93ae-efa5cc5571bb","keyword":"高纯","originalKeyword":"高纯锂"},{"id":"9ff884ff-1d9b-4af9-9c00-5833b20e40ea","keyword":"工业试验","originalKeyword":"工业试验"}],"language":"zh","publisherId":"xyjs199804011","title":"真空蒸馏法制取高纯金属工业试验","volume":"22","year":"1998"},{"abstractinfo":"在分析工艺原理的基础上, 直接利用青海察尔汗别勒滩地区盐湖晶间卤水提取制备的粗品碳酸为原料, 选用复合助剂, 采用真空热还原-蒸馏技术, 以CaO和Al2O3的混合物为助剂, 在1000 ℃, 0.13~1.33 Pa真空下反应5h, 制备了纯度≥99.95%的高纯金属, 其纯度可满足一般锂电池和合金对金属的纯度要求, 而且生产过程能耗低、无污染、产品纯度高、收率高、工艺流程短、设备简单, 具有明显的成本竞争优势.","authors":[{"authorName":"周园","id":"0804cd7f-fc30-410d-a4f3-e2a7f714162c","originalAuthorName":"周园"},{"authorName":"韩金铎","id":"4a9c35fa-03d5-4a3c-96b4-38fd1c8e9f07","originalAuthorName":"韩金铎"},{"authorName":"贾永忠","id":"a9dbb3b6-6d0e-44dd-81af-3593f48214b9","originalAuthorName":"贾永忠"},{"authorName":"马培华","id":"a53afdf8-fb0d-49d5-8d9a-2ee5992cc459","originalAuthorName":"马培华"},{"authorName":"景燕","id":"28c00186-e176-481d-99cc-e648fc90bb1a","originalAuthorName":"景燕"}],"doi":"10.3969/j.issn.0258-7076.2004.02.013","fpage":"343","id":"bcaf5ff9-1c6d-49e8-ad6a-036d01f9c1a1","issue":"2","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"5e4dd734-a121-4bdc-ba9f-ef142460d553","keyword":"真空冶金","originalKeyword":"真空冶金"},{"id":"696690bc-923e-42f0-8739-ef0bb35dfca1","keyword":"高纯金属","originalKeyword":"高纯金属锂"},{"id":"497ad5f7-ff4a-4280-b782-991d49d448cf","keyword":"热还原-真空蒸馏法","originalKeyword":"热还原-真空蒸馏法"},{"id":"ef546f4c-8c63-4725-a49b-075a27b86f12","keyword":"碳酸","originalKeyword":"碳酸锂"},{"id":"020c2a72-ec45-4a6c-924a-5a39b4d5ad69","keyword":"盐湖","originalKeyword":"盐湖"}],"language":"zh","publisherId":"xyjs200402013","title":"青海盐湖初级碳酸产品制备高纯金属研究","volume":"28","year":"2004"},{"abstractinfo":"采用等离子体接枝的方法在聚丙烯(PP)隔膜表面接枝磺酸根(SO3Li)基团以及甲基丙烯酸甲酯(MMA)基团.将隔膜与金属组装成对称电池采用恒流长时间放电、恒流充放电循环以及交流阻抗方法研究接枝的表面官能团对金属锂电极上沉积/溶解过程的影响.实验结果证实,表面接枝MMA和SO3Li官能团可有效促进的沉积/溶解动力学,降低界面电阻,抑制金属在反复溶解/沉积循环中枝晶的形成.","authors":[{"authorName":"鞠兰","id":"2d90fbfe-32bc-4cdd-90a3-7d4e8075362a","originalAuthorName":"鞠兰"},{"authorName":"李志虎","id":"292ee2bb-693d-4a05-b025-aa61311c9b21","originalAuthorName":"李志虎"},{"authorName":"鞠华","id":"618a1552-1218-4fb4-8678-5803a6cfce6d","originalAuthorName":"鞠华"},{"authorName":"徐艳辉","id":"bb3c06ea-6dbe-40c6-859c-f43ca4bcb143","originalAuthorName":"徐艳辉"}],"doi":"","fpage":"1640","id":"9fd938b6-a227-4af6-9915-efe0062adc64","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"5d97041d-4fa0-4553-953f-64c06c8223e6","keyword":"金属电极","originalKeyword":"锂金属电极"},{"id":"22b2520f-c99c-4d91-b653-983f282af074","keyword":"枝晶","originalKeyword":"枝晶"},{"id":"f060f994-acda-4b96-829f-d0646b2df931","keyword":"等离子体","originalKeyword":"等离子体"},{"id":"e58c61b9-bb80-4b6f-992e-82dc1f8f96bf","keyword":"接枝","originalKeyword":"接枝"}],"language":"zh","publisherId":"gncl201212032","title":"隔膜表面改性法改进金属电极循环性能","volume":"43","year":"2012"},{"abstractinfo":"以1 ~3μm金属铁粉和磷酸二氢为原料,采用高温固相法合成了无碳磷酸铁.通过X射线衍射(XRD),扫描电镜(SEM)和电化学测试等方法对合成的磷酸铁材料的结构、形貌和电化学性能进行了表征.研究结果表明,采用1 ~3 μm的金属铁粉和磷酸二氢为原料,高温固相法合成了具有橄榄石晶体结构的磷酸铁材料,粉末近似球形,振实密度较高,一次颗粒200 ~ 300 nm.600℃合成的磷酸铁存在杂质相,650~750℃下合成的磷酸铁具有完整的橄榄石晶体结构,产物为纯相.无碳的磷酸铁呈浅灰色,600~ 750℃下合成的磷酸铁材料0.1C充放电存在平台,显示两相充放电特性,比容量均在100 mAh·g-1左右,且极化较大.用蔗糖对其进行包覆改性得到碳包磷酸铁,其颜色呈黑色,改性后的磷酸铁锂电化学性能有了较大的提高,0.1C比容量达到了154 mAh·g-,充电平台和放电平台之间的极化明显降低,具有较好的循环稳定性.","authors":[{"authorName":"阚素荣","id":"34b5df53-f05f-482f-a366-518adbfbc0c6","originalAuthorName":"阚素荣"},{"authorName":"卢世刚","id":"e31923e4-6975-4bc6-9c84-c6f3f9f59085","originalAuthorName":"卢世刚"},{"authorName":"金维华","id":"98de2a99-b281-43a5-9f81-c10fced43916","originalAuthorName":"金维华"}],"doi":"10.13373/j.cnki.cjrm.2014.03.015","fpage":"441","id":"dd35b5d6-c32d-4435-ae2a-4ba491ae34cc","issue":"3","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"0f00691b-1995-4d31-af47-7dc5af8e84f9","keyword":"金属铁粉","originalKeyword":"金属铁粉"},{"id":"05d11435-e3c9-4096-8b90-e8584b80149d","keyword":"磷酸铁","originalKeyword":"磷酸铁锂"},{"id":"d744531a-cea7-45ce-9a48-891f0d0b3e12","keyword":"固相法","originalKeyword":"固相法"},{"id":"8e90e3e5-8685-41fb-8319-72dd43f1cf7b","keyword":"包覆","originalKeyword":"包覆"},{"id":"fdb87582-f085-44b2-9f33-3dc2802aff28","keyword":"性能","originalKeyword":"性能"}],"language":"zh","publisherId":"xyjs201403015","title":"以金属铁粉为原料磷酸铁的制备和性能研究","volume":"38","year":"2014"},{"abstractinfo":"采用高能球磨法制备了锂离子电池负极材料金属氮化物Li3-xMxN(M=Co,Cu等)。制备的金属氮化物具有较高的电化学活性和充放电可逆性,可以用作锂离子电池的高容量负极材料。所制备的Li2.6Co0.4N前10次循环的脱嵌容量高达880mAh·g-1。Li2.6Co0.2Cu0.2N最初几个循环的脱嵌容量为750mAh·g-1,45次充放电循环后的容量保持率为80%。Li2.6Co0.2Fe0.2N是含有Li2.6Co0.4N的两相或多相混合物,40次充放电循环后脱容量为560mAh·g-1,相对第二次脱容量的保持率为82%。","authors":[{"authorName":"王可","id":"a8670a74-ea6a-49e3-b862-34ea49eb2078","originalAuthorName":"王可"},{"authorName":"杨军","id":"3b9e0130-8206-4b09-9911-36c3cdbab88b","originalAuthorName":"杨军"},{"authorName":"解晶莹","id":"6e7d4b28-f70e-4f8a-bff7-b779a16f6dce","originalAuthorName":"解晶莹"},{"authorName":"刘宇","id":"e150e806-f1f5-4fd6-aced-52c49dc28544","originalAuthorName":"刘宇"},{"authorName":"王保峰","id":"34e6d912-4c74-456f-aebc-38d51b2c3b5d","originalAuthorName":"王保峰"}],"categoryName":"|","doi":"","fpage":"843","id":"c299140d-cc43-400c-b034-bb45d352afc3","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"91c2c3fc-105c-4d46-97f2-241e8adb56ca","keyword":"球磨","originalKeyword":"球磨"},{"id":"7938e3c4-522b-42e8-8f23-9834d3eba1ef","keyword":" lithium metal nitride","originalKeyword":" lithium metal nitride"},{"id":"14508e5d-b65c-4d9c-acab-307363551b51","keyword":" anode material","originalKeyword":" anode material"},{"id":"2deef787-7607-4e8c-85c3-3e143884762b","keyword":" lithium-ion batteries","originalKeyword":" lithium-ion batteries"}],"language":"zh","publisherId":"1000-324X_2003_4_25","title":"球磨法制备金属氮化物及电化学性能研究","volume":"18","year":"2003"},{"abstractinfo":"采用高能球磨法制备了锂离子电池负极材料金属氮化物Li3-xMxN(M=Co,Cu等).制备的金属氮化物具有较高的电化学活性和充放电可逆性,可以用作锂离子电池的高容量负极材料.所制备的Li2.6Co0.4N前10次循环的脱嵌容量高达880mAh.g-1.Li2.6Co0.2Cu0.2N最初几个循环的脱嵌容量为750mAh@g-1,45次充放电循环后的容量保持率为80%.Li2.6Co0.2Fe0.2N是含有Li2.6Co0.4N的两相或多相混合物,40次充放电循环后脱容量为560mAh@g-1,相对第二次脱容量的保持率为82%.","authors":[{"authorName":"王可","id":"698d2cdf-8dbb-4d44-a9a4-7865a4e003a5","originalAuthorName":"王可"},{"authorName":"杨军","id":"28a79ec9-2611-4b91-929b-5cd81d1822a7","originalAuthorName":"杨军"},{"authorName":"解晶莹","id":"2962c6fa-5b6e-40dc-bde4-6d38dbe448fa","originalAuthorName":"解晶莹"},{"authorName":"刘宇","id":"1ce77ae2-f685-4044-a8fa-bdf4f82239d3","originalAuthorName":"刘宇"},{"authorName":"王保峰","id":"3ed40500-6d44-4b51-8c5f-a9c2fb82afc0","originalAuthorName":"王保峰"}],"doi":"10.3321/j.issn:1000-324X.2003.04.022","fpage":"843","id":"64b5f295-e772-424e-9dfb-6d113fcb6668","issue":"4","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"e8bd5e16-209c-46d9-848f-72f58b1d8c7f","keyword":"球磨","originalKeyword":"球磨"},{"id":"348ce448-30df-4ec8-bdfd-41f61ef7dcd6","keyword":"金属氮化物","originalKeyword":"锂金属氮化物"},{"id":"6908e7b7-dcf8-4fa8-9c4f-826feacc00af","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"2b1f031a-701e-4b26-8924-f4331cadd9d7","keyword":"锂离子电池","originalKeyword":"锂离子电池"}],"language":"zh","publisherId":"wjclxb200304022","title":"球磨法制备金属氮化物及电化学性能研究","volume":"18","year":"2003"},{"abstractinfo":"探索了用机械合金化制备得到的金属锑与石墨复合材料(Sbx-C1-x,x=0.1~0.4)作为锂离子电池负极材料的电化学吸放特性,发现球磨得到的Sbx-C1-x是由微米级Sb颗粒和C所组成的复合物.Sb0.2-C0.8的吸放过程实际上是由石墨和金属锑的吸放反应组成,首次吸容量达705 mAh/g,首次不可逆容量约130 mAh/g.对Sb含量与Sbx-C1-x(x=0.1~0.4)电化学吸放性能的关系表明Sb02-C0.8具有最高的首次充放电容量,而碳含量对循环稳定性有较大的影响.","authors":[{"authorName":"曹高劭","id":"f0053c4a-9a85-4479-a7c0-9bed4f976234","originalAuthorName":"曹高劭"},{"authorName":"赵新兵","id":"beefab95-9c0b-4569-94ec-1d0bff1f112b","originalAuthorName":"赵新兵"}],"doi":"","fpage":"915","id":"216793b6-6c07-4816-bd14-276c302b9a97","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"73c2dec3-6eda-4e19-9ce2-5c0e6fad16e3","keyword":"锂离子电池","originalKeyword":"锂离子电池"},{"id":"0fecc169-2e7d-43cd-af01-a0abb7fa5312","keyword":"负极材料","originalKeyword":"负极材料"},{"id":"72667813-e0bd-4cb0-9ed2-d8dfcba2f376","keyword":"锑","originalKeyword":"锑"},{"id":"5f4be624-83e4-4510-99f8-efc5972bcb92","keyword":"石墨","originalKeyword":"石墨"},{"id":"e3db4805-f974-4c37-8a47-e155bddb85f8","keyword":"复合材料","originalKeyword":"复合材料"}],"language":"zh","publisherId":"xyjsclygc200311011","title":"金属Sb与石墨复合材料的电化学吸放性质","volume":"32","year":"2003"},{"abstractinfo":"研究化学镀Ni、Cu和混合掺杂Zn处理后天然鳞片石墨的电化学嵌/脱性能.结果表明:金属微粒Ni、Cu与Zn的掺入可有效改善天然鳞片石墨的循环性能与大倍率充放电特性,金属微粒有效降低石墨电极内阻、保证石墨颗粒之间紧密的电接触是掺入金属微粒后石墨大倍率充放电性能得到改善的重要原因之一.Ni与Cu微粒改善石墨循环性能的机理与Zn的不同,Cu、Ni通过阻止溶剂化锂离子嵌入维持石墨结构稳定性,来达到提高材料循环性能的目的;金属Zn改善石墨循环性能的原因则可能是嵌过程中,Zn化所形成Li-Zn合金维持材料表面所形成SEI膜的稳定性.","authors":[{"authorName":"杨娟","id":"6726bff6-1b1e-4946-8509-3c4caf8cb16d","originalAuthorName":"杨娟"},{"authorName":"赖延清","id":"a90511e3-f390-4bb9-9f75-bf3f794584b0","originalAuthorName":"赖延清"},{"authorName":"李劼","id":"03f52275-cbb5-48f2-b27b-e67b0ce960ad","originalAuthorName":"李劼"},{"authorName":"邹幽兰","id":"af1ad2b5-5b9d-4a44-bec0-c1b33f62f35e","originalAuthorName":"邹幽兰"},{"authorName":"唐晶晶","id":"aeb8dd53-2695-4356-a7f9-f363aca561d6","originalAuthorName":"唐晶晶"},{"authorName":"周向阳","id":"c3e65d45-8a84-4607-87ec-abddf89af4b5","originalAuthorName":"周向阳"}],"doi":"","fpage":"1667","id":"fecd9389-abc7-4710-876d-20cdb255f234","issue":"6","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"aea3a102-9b2d-4329-8add-8d2beef48a4d","keyword":"天然鳞片石墨","originalKeyword":"天然鳞片石墨"},{"id":"16b2c7b1-5571-43b4-af28-42914ffa611f","keyword":"金属微粒掺杂","originalKeyword":"金属微粒掺杂"},{"id":"a5e6e17c-d145-4a6b-89c6-ba064168258c","keyword":"锂离子二次电池","originalKeyword":"锂离子二次电池"},{"id":"64fd79c0-81f2-42c9-97eb-121e74b9fcd7","keyword":"嵌/脱性能","originalKeyword":"嵌/脱锂性能"}],"language":"zh","publisherId":"zgysjsxb201206017","title":"掺杂金属对天然鳞片石墨电化学嵌/脱性能的影响","volume":"22","year":"2012"}],"totalpage":2224,"totalrecord":22235}