{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和差示扫描量热仪(DSC)等分析手段研究了A1-7.0Zn-2.9Mg合金板在制备过程中及不同时效热处理工艺下的显微组织及力学性能.结果表明,A1-7.0Zn-2.9Mg合金铸态组织主要由α(A1)+ Mg32(Al,Zn)a9 (T)相共晶组织、A1(Fe,Mn) Si相和少量过剩T相组成.经均匀化处理后,共晶相基本溶入基体中,基体中又重新析出MgZn2粒子及少量Al3Zr相.热轧后的晶粒组织沿轧制方向呈纤维状分布.试验了一种低温时效+常规时效的LTA工艺,结果显示,LTA态的合金强度和伸长率均略高于峰值时效(T6)和回归再时效(RRA)态.同时,析出相尺寸明显大于T6、RRA和双极时效(T73)态,且晶界析出相呈粗大不连续分布,具有较好的抗应力腐蚀开裂(SCC)潜力.","authors":[{"authorName":"伍波","id":"7c6e720f-cdb7-4733-935f-90a84e126449","originalAuthorName":"伍波"},{"authorName":"李龙","id":"5fc85dbd-6c7b-4437-91c8-979f0ba90a39","originalAuthorName":"李龙"},{"authorName":"夏承东","id":"ac4ae4a5-a8de-48a9-8ccc-b7a45e75e4b8","originalAuthorName":"夏承东"},{"authorName":"韩银娜","id":"44de5120-0233-49b2-98f9-590e06d904e8","originalAuthorName":"韩银娜"},{"authorName":"周德敬","id":"4460eb86-464d-4581-bb89-345defdc228a","originalAuthorName":"周德敬"}],"doi":"10.13289/j.issn.1009-6264.2016-X348","fpage":"81","id":"087ed169-c223-4608-b01a-b78ed37660f2","issue":"6","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"51ff4fce-ccc1-44b7-b595-dacaf11c9d2b","keyword":"Al-7.0Zn-2.9Mg铝合金","originalKeyword":"Al-7.0Zn-2.9Mg铝合金"},{"id":"43cbbef1-2cb3-4c27-adc9-7545e1f0e67c","keyword":"固溶时效处理","originalKeyword":"固溶时效处理"},{"id":"1e7a9fdf-d28d-42bb-bfb3-40e996488b5e","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"4698f322-86f3-4db7-8ffa-52dd01aad789","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"jsrclxb201706013","title":"Al-7.0Zn-2.9Mg合金板在制备过程中的显微组织及力学性能","volume":"38","year":"2017"},{"abstractinfo":"采用喷射成形技术制备了Al10Zn2.9Mg1.7Cu高强高韧铝合金沉积坯件, 研究了喷射成形制备过程中各工艺参数对沉积坯件的成形性、显微组织、致密度的影响, 确定了适当的工艺参数, 研究了沉积坯件的热挤压及热处理工艺, 对材料的组织进行了分析并对不同状态的材料性能进行了比较. 研究结果表明: 当喷射成形工艺参数合理时, 沉积坯件具有良好的成形性与致密度, 在随后的热挤压过程中, 通过较低的挤压比即可使材料达到全致密; 通过对合金进行适当的热处理, 材料的极限抗拉强度达到810 MPa, 同时延伸率保持在8%~11%, 该材料是一种理想的轻质高强结构材料. ","authors":[{"authorName":"张永安","id":"df79262f-e029-413b-808a-cdcd73a97e56","originalAuthorName":"张永安"},{"authorName":"熊柏青","id":"072d965f-f217-498b-bd38-a4e0919168a1","originalAuthorName":"熊柏青"},{"authorName":"朱宝宏","id":"6667950f-70a4-41c6-8af1-753e0a8235e0","originalAuthorName":"朱宝宏"},{"authorName":"刘红伟","id":"3e4c1db1-1fed-4e36-9055-d54793eda64a","originalAuthorName":"刘红伟"},{"authorName":"石力开","id":"da236232-3093-4127-835c-a323c70f8c73","originalAuthorName":"石力开"},{"authorName":"王洪斌","id":"102aa255-07c4-4dd9-b222-38ecfaa9b054","originalAuthorName":"王洪斌"},{"authorName":"张济山","id":"04a6a91b-754f-4616-9e33-8983ea74c252","originalAuthorName":"张济山"}],"doi":"10.3969/j.issn.0258-7076.2003.05.025","fpage":"609","id":"fdb31d7c-7732-4cdc-b30e-7cb3a8dc52ac","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"26066b87-ea42-4f0c-94a4-77b04a50b782","keyword":"喷射成形","originalKeyword":"喷射成形"},{"id":"df92e7d4-8206-43d8-9dc8-8734809b26c6","keyword":"Al10Zn2.9Mg1.7Cu合金","originalKeyword":"Al10Zn2.9Mg1.7Cu合金"},{"id":"f4f382cc-fac6-4949-a45f-035678d08143","keyword":"超高强高韧铝合金","originalKeyword":"超高强高韧铝合金"},{"id":"22549b0f-efb1-4b7d-8f3b-79810fb06735","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"xyjs200305025","title":"Al10Zn2.9Mg1.7Cu超高强铝合金的喷射成形制备研究","volume":"27","year":"2003"},{"abstractinfo":"采用EBSD分析技术研究了Mg-7.0Al-0.4Zn合金超塑性变形机制.结果表明,超塑拉伸变形主要是通过晶界滑动和晶内塑性滑移协调完成的.变形初期,随着变形量的增大,{0002}//ED的织构明显增强,晶内滑移起主要协调变形作用.变形中后期孪生开动,接近断裂时,晶内滑移基本消失,孪生成为主要的协调变形机制,但孪生的贡献较小.","authors":[{"authorName":"吴立鸿","id":"0e0c8215-3898-466a-a8fe-bfb288711e85","originalAuthorName":"吴立鸿"},{"authorName":"王铁豹","id":"4c856b37-3f65-4eb8-970e-23d6a043737a","originalAuthorName":"王铁豹"},{"authorName":"王盼","id":"7953ef49-c2b0-4a53-930a-cb5891d9b5eb","originalAuthorName":"王盼"},{"authorName":"王利国","id":"47b3b5c8-48fb-432b-b7de-3ce89dee9a66","originalAuthorName":"王利国"},{"authorName":"关绍康","id":"dac572c0-7d9a-49fd-918e-c05d3690ac51","originalAuthorName":"关绍康"}],"doi":"","fpage":"1887","id":"caba9d8d-784e-4e45-88f5-90781043751a","issue":"11","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"ea71a94a-a5ce-40df-a24e-ad23415ddc2d","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"dd880129-1d85-4ace-b866-f348da6dd3fc","keyword":"超塑性","originalKeyword":"超塑性"},{"id":"68099892-64d3-474f-b6c7-99a81e6d6507","keyword":"织构","originalKeyword":"织构"},{"id":"a809509e-6a76-4a0f-be34-d0a00d1a43d3","keyword":"孪生","originalKeyword":"孪生"}],"language":"zh","publisherId":"xyjsclygc201111002","title":"Mg-7.0Al-0.4Zn合金超塑性变形中的EBSD研究","volume":"40","year":"2011"},{"abstractinfo":"研究不具有典型细晶组织的挤压态Mg-7.0Al-0.2Zn(AZ70)合金的超塑性及其变形机制.结果表明:AZ70镁合金具有良好的超塑性变形行为.在380 ℃及1×10~(-3) s~(-1)的最佳变形条件下,最大伸长率为191.5%.380 ℃时具有良好的高应变速率(1×10~(-2) s~(-1))超塑性变形能力,伸长率为161.5%.晶粒尺寸随温度的升高与应变速率的降低而增大.超塑性变形是以晶界滑移为主,表现为变形过程中晶粒组织基本保持等轴,且孔洞沿晶界形成并长大.同时孔洞的长大及连接导致最终断裂,断口形貌显示为典型的韧窝断裂特征.","authors":[{"authorName":"吴立鸿","id":"29330446-9a54-4830-a276-2a2d90886adf","originalAuthorName":"吴立鸿"},{"authorName":"王利国","id":"b23ec6a0-17a0-47ca-b369-cc49f46aa0d4","originalAuthorName":"王利国"},{"authorName":"王盼","id":"16409ddd-88c1-42ab-9972-7f28f347ce7f","originalAuthorName":"王盼"},{"authorName":"关绍康","id":"f41a88ce-4c97-4908-89f6-7e2dfe47ef97","originalAuthorName":"关绍康"}],"doi":"","fpage":"194","id":"e91abcab-80fb-4d2d-b1ce-94234e2de896","issue":"2","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"c8d44578-58f3-4f38-9b57-d6417f7906ac","keyword":"AZ70镁合金","originalKeyword":"AZ70镁合金"},{"id":"3cbef05a-324d-480f-aced-eb330a48dae8","keyword":"超塑性","originalKeyword":"超塑性"},{"id":"3e354d53-02fb-44a4-a533-38f02e55ee3f","keyword":"变形机制","originalKeyword":"变形机制"}],"language":"zh","publisherId":"xyjsclygc201002002","title":"Mg-7.0Al-0.2Zn合金的超塑性及其变形机制","volume":"39","year":"2010"},{"abstractinfo":"主要采用金相、 X射线衍射和透射电镜等测试手段, 对Al10.8Zn2.9Mg1.9Cu合金在沉积、挤压和热处理3种状态的显微组织演变规律进行研究.结果表明: 合金在沉积和挤压前预热两种状态中基体都由等轴晶粒组成, 晶粒的平均尺寸分别约为23和24 μm, 热挤压之后, 晶粒平行挤压方向被拉长.在沉积和挤压两种状态中一次析出相主要为MgZn2, Al2Cu和Al2CuMg 3种, 没有发生变化;热处理之后, 一次析出相大部分回溶, 少量的Al2CuMg相没有回溶.Al10.8Zn2.9Mg1.9Cu合金经过热处理之后, 晶内分布大量弥散的尺寸约为6~15 nm的η′, 晶界上分布不连续、尺寸在10~20 nm左右的η相, 不存在明显的晶间无析出带.","authors":[{"authorName":"张智慧","id":"c7750dc2-6f78-4bd6-b246-b7748283084e","originalAuthorName":"张智慧"},{"authorName":"熊柏青","id":"d55eeef2-50f7-4add-80aa-dcbe7a465a7b","originalAuthorName":"熊柏青"},{"authorName":"张永安","id":"655655ea-469f-4f51-bbdb-7dad057a4934","originalAuthorName":"张永安"},{"authorName":"朱宝宏","id":"06669a47-1869-40b9-8898-aec1be59b27d","originalAuthorName":"朱宝宏"},{"authorName":"刘红伟","id":"c7d7626a-ca6f-4990-8bd3-721859d817eb","originalAuthorName":"刘红伟"},{"authorName":"王峰","id":"e9952b24-fea0-45fe-a42f-0a85219c51d6","originalAuthorName":"王峰"},{"authorName":"石力开","id":"07542bd5-ccf8-4c9a-b15d-50b5ce82a004","originalAuthorName":"石力开"}],"doi":"10.3969/j.issn.0258-7076.2005.05.001","fpage":"599","id":"495c284a-c76c-47c9-a41f-f8f261fae6b5","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"af8eb69b-0923-4bb8-a340-4418a3e406db","keyword":"喷射成形","originalKeyword":"喷射成形"},{"id":"58772ab3-80f0-4270-ac59-ddfc28c599ca","keyword":"AlZnMgCu","originalKeyword":"AlZnMgCu"},{"id":"5a96b05f-7e32-4bc1-a68e-3012b61af8a6","keyword":"沉积态","originalKeyword":"沉积态"},{"id":"533bbb60-b5d9-4338-b40f-d621144ef182","keyword":"热挤压","originalKeyword":"热挤压"},{"id":"5a8e5b89-afa4-4a8b-9a12-bec435308252","keyword":"热处理","originalKeyword":"热处理"},{"id":"3b98c697-5620-4a9d-8a73-583f6b71eeb9","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"xyjs200505001","title":"喷射成形Al10.8Zn2.9Mg1.9Cu合金的显微组织演变规律研究","volume":"29","year":"2005"},{"abstractinfo":"基于剥落腐蚀试验,研究了火焰矫正次数对Al?Zn?Mg铝合金抗腐蚀性能的影响.结果表明,火焰矫正会导致Al?Zn?Mg铝合金抗腐蚀性能降低,其抗腐蚀性能顺序为:母材>2次热矫正>3次热矫正>1次热矫正.Al?Zn?Mg铝合金剥落腐蚀性能变化主要与晶界析出相以及基体析出相的转变有关.随着火焰矫正次数的增加,无沉淀析出带消失,晶界析出相经历了回溶和再析出过程.经1次火焰矫正后,Al?Zn?Mg铝合金的晶界析出相更加连续,因此抗腐蚀性能最差.","authors":[{"authorName":"李帅","id":"44c38ee0-3eca-4bd4-a065-072b93525d00","originalAuthorName":"李帅"},{"authorName":"郭丹","id":"b0aa9fba-7c50-4383-b8fd-0ac90e3bbd83","originalAuthorName":"郭丹"},{"authorName":"董红刚","id":"34b2ec4c-23ff-4e0d-b09f-a50fbddd8464","originalAuthorName":"董红刚"}],"doi":"10.1016/S1003-6326(17)60029-3","fpage":"250","id":"a159ac26-5ee8-4969-912b-07fcc5c7c0c1","issue":"2","journal":{"abbrevTitle":"ZGYSJSXBEN","coverImgSrc":"journal/img/cover/ZGYSJSXBEN.jpg","id":"757390d2-7d95-4517-96f1-e467ce1bff63","issnPpub":"1003-6326","publisherId":"ZGYSJSXBEN","title":"中国有色金属学报(英文版)"},"keywords":[{"id":"da70a73f-311f-4d6c-ad8b-5505a83678c8","keyword":"Al?Zn?Mg铝合金","originalKeyword":"Al?Zn?Mg铝合金"},{"id":"fef7fb8d-acfd-4e25-a29a-88486fcb60f0","keyword":"火焰矫正","originalKeyword":"火焰矫正"},{"id":"0acd23bb-743b-4980-a762-2c530fe2d276","keyword":"剥落腐蚀","originalKeyword":"剥落腐蚀"},{"id":"66d9bbd9-0a77-414b-8a9b-61912f61276e","keyword":"再析出","originalKeyword":"再析出"}],"language":"zh","publisherId":"zgysjsxb-e201702002","title":"火焰矫正对Al?Zn?Mg铝合金腐蚀性能的影响","volume":"27","year":"2017"},{"abstractinfo":"评述了国内外超高强铝合金的研究及应用概况,介绍了ZnMg、Cu等主要元素与Zr、Sc、Li、Ag、Be及稀土等微量元素对Al-Zn-Mg-Cu系超高强铝合金组织与性能的影响,介绍了Al-Zn-Mg-Cu系合金制备技术、热处理工艺及其最新进展,讨论了超高强铝合金主要强化机制以及微观组织与性能之间的关系.针对超高强铝合金现存的问题,提出了今后研究开发的方向.","authors":[{"authorName":"刘晓涛","id":"843d44b1-3666-4d22-97d9-19f3e3b6eb11","originalAuthorName":"刘晓涛"},{"authorName":"崔建忠","id":"97e3533a-616d-435a-aed9-2ef9b8152ae8","originalAuthorName":"崔建忠"}],"doi":"","fpage":"47","id":"b1344332-ada9-4c8a-9644-4d99a2af8e87","issue":"3","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3136e972-ea32-4742-949b-e41c5194f353","keyword":"超高强铝合金","originalKeyword":"超高强铝合金"},{"id":"50356190-552b-490b-ba54-610576f3ff7d","keyword":"合金化","originalKeyword":"合金化"},{"id":"6fdaa115-4310-4d95-97ea-fbcb573d38cb","keyword":"热处理","originalKeyword":"热处理"},{"id":"c3ec832c-aed6-4b86-bf59-e4bd782c63d9","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"cldb200503014","title":"Al-Zn-Mg-Cu系超高强铝合金的研究进展","volume":"19","year":"2005"},{"abstractinfo":"通过观察经剥落腐蚀试验的Al-Zn-Mg-Cu系铝合金试样显微组织,研究了不同成分、热处理及轧制工艺对Al-Zn-Mg-Cu系铝合金的抗剥落腐蚀(EC)性能的影响.结果表明,添加稀土元素Ce的试样抗剥蚀性能低于未添加的合金试样;经过回归再时效处理(RRA)的合金试样抗剥蚀性能优于峰值时效(T6)的合金试样;随着成品冷轧总压下率的增加,合金抗剥蚀性能呈先下降再略上升的趋势,其中10%的成品冷轧总压下率的合金试样抗剥蚀性能最优.","authors":[{"authorName":"杨弋","id":"c3af21ea-e386-4a98-87c8-43b3288ff275","originalAuthorName":"杨弋"},{"authorName":"陈忠家","id":"65938dd4-1355-4945-8232-e436b52908b9","originalAuthorName":"陈忠家"},{"authorName":"周如","id":"78f5fc2f-e4e2-4f09-b716-36db8f3bea8f","originalAuthorName":"周如"},{"authorName":"张志","id":"6ff2ff57-d1c1-4d80-b958-2daa61f29fab","originalAuthorName":"张志"}],"doi":"","fpage":"6","id":"125da411-4964-4ecd-990e-0441dfb58d50","issue":"3","journal":{"abbrevTitle":"JSGNCL","coverImgSrc":"journal/img/cover/JSGNCL.jpg","id":"46","issnPpub":"1005-8192","publisherId":"JSGNCL","title":"金属功能材料"},"keywords":[{"id":"a5fde5fc-33e6-4ec9-be59-6f40d6607a7e","keyword":"Al-Zn-Mg-Cu系铝合金","originalKeyword":"Al-Zn-Mg-Cu系铝合金"},{"id":"8e183da4-d9c9-4475-866c-3aef7dfd864b","keyword":"稀土Ce","originalKeyword":"稀土Ce"},{"id":"709b8033-76f6-4006-8374-2dd5d4650fa8","keyword":"热处理","originalKeyword":"热处理"},{"id":"fce1d671-97d3-4d28-9d16-d64ad64f137e","keyword":"轧制工艺","originalKeyword":"轧制工艺"},{"id":"8c9f644b-5259-4e06-9cce-b9ca844df36e","keyword":"抗剥落腐蚀性能","originalKeyword":"抗剥落腐蚀性能"}],"language":"zh","publisherId":"jsgncl201303002","title":"Al-Zn-Mg-Cu系铝合金抗剥落腐蚀性能研究","volume":"20","year":"2013"},{"abstractinfo":"采用低温球磨法制备了纳米晶Al-Zn-Mg-Cu系铝合金粉末,对纳米晶粉末进行真空热压,获得纳米晶铝合金块体.采用显微分析方法研究了纳米晶粉末和块体材料的微观组织结构.试验结果表明,纳米晶铝合金粉末具有良好的热稳定性,热压块体的平均晶粒尺寸在100nm以下.低温球磨所得铝合金粉末晶粒尺寸为48nm;真空退火试验表明其具有良好的热稳定性;热压块体的平均晶粒尺寸在100nm以下.","authors":[{"authorName":"万志永","id":"728431c8-0cec-4056-b810-cd2b1f9d9551","originalAuthorName":"万志永"},{"authorName":"樊建中","id":"555cf274-279f-477a-abc4-b3c526767a78","originalAuthorName":"樊建中"},{"authorName":"田晓风","id":"dec54329-1e1d-4c57-ac16-60c85260dbf5","originalAuthorName":"田晓风"},{"authorName":"程军胜","id":"31b366fc-2156-415d-a8a9-f4ae685c34cb","originalAuthorName":"程军胜"},{"authorName":"杨滨","id":"209a1e48-cba2-4cb3-9247-6e87485b928a","originalAuthorName":"杨滨"}],"doi":"10.3969/j.issn.0258-7076.2005.06.006","fpage":"827","id":"b1d8f269-8905-418d-82fb-5ea1927eec39","issue":"6","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"1a7b3fd6-b1cd-4647-9647-96c53c8a877b","keyword":"纳米晶铝合金","originalKeyword":"纳米晶铝合金"},{"id":"fc8c07e2-8d50-4e26-9a71-391189458465","keyword":"块体","originalKeyword":"块体"},{"id":"22cb8bb9-2c4d-4a3a-8400-cfc0866f1f2a","keyword":"低温球磨","originalKeyword":"低温球磨"},{"id":"f9e4bd27-b6c1-473f-bb89-7c76d8599904","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"xyjs200506006","title":"低温球磨法制备块体纳米晶Al-Zn-Mg-Cu系铝合金","volume":"29","year":"2005"},{"abstractinfo":"用喷射成形工艺制备了Al-Zn-Mg-Cu高强铝合金. 通过对最初形成的沉积坯的显微组织的观察, 分析液滴在飞行和沉积过程中的形核、长大过程, 分析均匀化和热挤压后最初形成的沉积材料的显微组织变化. 由实验结果, 经雾化沉积制备的Al-Zn-Mg-Cu合金, 最初沉积坯的沉积态由于经历了两次形核, 形成了大小不一的近似等轴晶; 均匀化晶粒无明显长大, 晶粒进一步球化, 同常规的工艺相比, 雾化沉积制备的材料可以省略均匀化过程; 沉积态组织直接经过热挤压形成均匀致密的组织. ","authors":[{"authorName":"祝铭亮","id":"9de07641-14d4-4d1b-8cfa-9ae46a0db785","originalAuthorName":"祝铭亮"},{"authorName":"周铁涛","id":"51c3f391-b109-4396-867f-72020a37139b","originalAuthorName":"周铁涛"},{"authorName":"刘培英","id":"d823eb2a-027f-4b5a-adf1-7e8651224d01","originalAuthorName":"刘培英"},{"authorName":"张永安","id":"b4e02cc3-cf82-4064-856d-b46f9495f6d2","originalAuthorName":"张永安"},{"authorName":"熊柏青","id":"47acc4ea-1be1-4a95-acca-0caea17682ea","originalAuthorName":"熊柏青"},{"authorName":"石力开","id":"6ccf7404-fc73-4571-93e3-9cab990e632c","originalAuthorName":"石力开"},{"authorName":"张济山","id":"26eb9ad1-8687-41e8-92a3-e26a240f1808","originalAuthorName":"张济山"},{"authorName":"陈昌麒","id":"597af484-b964-4e0a-9e3f-5b375e4251c8","originalAuthorName":"陈昌麒"}],"doi":"10.3969/j.issn.0258-7076.2003.04.009","fpage":"455","id":"5eabb8a3-9e66-4ddc-b822-6e6006ad1916","issue":"4","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"f3423d42-861b-4146-9858-038968f6baf1","keyword":"喷射成形","originalKeyword":"喷射成形"},{"id":"f3bc6690-a00b-49a3-a88e-0537b4662522","keyword":"显微组织","originalKeyword":"显微组织"},{"id":"2697c7c7-fd63-46bb-92fb-90ea7b95efb0","keyword":"形核","originalKeyword":"形核"}],"language":"zh","publisherId":"xyjs200304009","title":"最初形成的喷射沉积Al-Zn-Mg-Cu铝合金的显微组织分析","volume":"27","year":"2003"}],"totalpage":6177,"totalrecord":61763}