{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"利用Gleeble3500热模拟试验机对双相钢连铸坯的高温力学性能进行了研究,并通过Thermo-Calc热力学计算、差示扫描量热法(DSC)以及断口形貌与组织观察的方法,分析了其脆性区间产生的原因.研究表明,实验用钢的零强度温度(ZST)和零塑性温度(ZDT)分别为1450和1440℃,凝固前沿脆化温度区间较小,具有较好的抗高温裂纹特性.高温脆性区为1415~1440℃,其脆化的原因是晶界熔化,导致实验钢在应力作用下沿晶界开裂;低温脆性区为690 ~870℃,其脆化的原因是α-铁素体沿奥氏体晶界析出,导致实验钢在应力作用下沿晶界断裂.","authors":[{"authorName":"刘洋","id":"1ccd5b0a-f360-4259-b958-e184b50928b0","originalAuthorName":"刘洋"},{"authorName":"王征","id":"857e8d6e-b4b8-43eb-bff0-bc98ba90a300","originalAuthorName":"王征"},{"authorName":"崔衡","id":"6b3e23ca-5d08-4ebd-98fd-39b04cb20abc","originalAuthorName":"崔衡"},{"authorName":"赵征志","id":"468d5dee-cab7-4f43-abfa-40e38d14547e","originalAuthorName":"赵征志"},{"authorName":"王洋","id":"5e10c192-06c9-4492-a04a-c0d93f8914a3","originalAuthorName":"王洋"},{"authorName":"杨鹤","id":"8e8256ad-0859-418e-86a7-6f833b69d592","originalAuthorName":"杨鹤"},{"authorName":"刘柏松","id":"eabcfd0d-f651-4bc4-9903-cced381c444b","originalAuthorName":"刘柏松"},{"authorName":"青靓","id":"372c155a-222d-493c-a5a0-6e7b0cef3247","originalAuthorName":"青靓"}],"doi":"","fpage":"133","id":"ef68dcbd-5737-49c3-96b8-173bf21aab74","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"af8ae605-d7c6-4a95-a5f1-224739e88fd8","keyword":"双相钢","originalKeyword":"双相钢"},{"id":"27472639-5fd9-4293-b9dd-8355f62e01a6","keyword":"高温力学性能","originalKeyword":"高温力学性能"},{"id":"819cbc11-eaf4-4806-a6bc-ba910b12a18a","keyword":"脆性温度区间","originalKeyword":"脆性温度区间"},{"id":"b52c0c4a-0c2d-4a62-b998-6db67c298d89","keyword":"相变","originalKeyword":"相变"}],"language":"zh","publisherId":"jsrclxb201605023","title":"高强度双相钢的高温力学性能","volume":"37","year":"2016"},{"abstractinfo":"为研究RH-MFB精炼工艺对脱碳过程的影响,将脱碳机理确定为钢液本体脱碳与CO克服静压力上浮、氩气泡表面脱碳和飞溅液滴脱碳,根据脱碳反应动力学和质量守恒原理建立了RH-MFB脱碳数学模型.计算结果表明:降低初始碳含量、增大初始氧含量可使脱碳终点碳含量降低;提高压降速率和吹氩流量、增大浸渍管内径使得脱碳速率增大;在固定氧气流量下,随着吹氧时间的延长,脱碳终点碳含量降低,但脱碳终点氧含量升高.","authors":[{"authorName":"韩传基","id":"3959daeb-5fc3-4369-a470-e624c9a1210c","originalAuthorName":"韩传基"},{"authorName":"刘柏松","id":"8247a2f5-86aa-48ca-8119-8f4a4a467c9b","originalAuthorName":"刘柏松"},{"authorName":"艾立群","id":"2c67b446-2fe3-451a-8154-ad5c5b86c1fc","originalAuthorName":"艾立群"},{"authorName":"朱立新","id":"3d4342b6-2663-4a0a-8356-db1720ce1b4d","originalAuthorName":"朱立新"},{"authorName":"黄宗泽","id":"636173d8-c5a3-442a-a077-ec414e90ff68","originalAuthorName":"黄宗泽"},{"authorName":"蔡开科","id":"1c7fd816-19e1-4092-baa5-f6fe3a2027f4","originalAuthorName":"蔡开科"}],"doi":"","fpage":"17","id":"0560b0a0-ee74-41fe-9ae1-2be8ab367ced","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"6dc25e6a-e6e3-4349-8e94-9dd38fcfa4fa","keyword":"RH-MFB精炼","originalKeyword":"RH-MFB精炼"},{"id":"c5510e62-380d-4ff2-8110-847ddbc10e21","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"77b1593d-0cf7-4874-b2ef-48ed13e1fd37","keyword":"工艺分析","originalKeyword":"工艺分析"}],"language":"zh","publisherId":"gtyjxb200704004","title":"RH-MFB精炼过程脱碳数学模型及工艺研究","volume":"19","year":"2007"},{"abstractinfo":"根据RH废气分析系统对废气流量及其中CO、CO_2气体含量的测量,建立了废气分析脱碳数学模型.经验证,模型计算值与实际测量值吻合较好.对于成品碳的质量分数小于等于20×10~(-6)的超低碳钢,模型计算的RH自然脱碳终点碳的质量分数误差在士3×10~(-6)之间.废气流量修正系数δ采用分段取值更能符合实际情况,RH精炼开始3min内,δ为0.35,3min后δ为0.6.在RH自然脱碳后期,当废气中CO的质量分数由峰值降低到5%时,钢水中碳的质量分数的平均值达到13×10~(-6),已经低于RH终点碳含量的要求值,可以判定RH脱碳过程结束.","authors":[{"authorName":"刘柏松","id":"bd0f343e-4fa5-457c-a0b2-535b33e2bf0d","originalAuthorName":"刘柏松"},{"authorName":"朱国森","id":"3ec59662-54a2-46c8-950e-8fefce37b7cd","originalAuthorName":"朱国森"},{"authorName":"李本海","id":"4612f443-db35-4a3d-ab46-49f8916e09dd","originalAuthorName":"李本海"},{"authorName":"崔爱民","id":"5c4aee9d-e184-478a-95e8-4e5050123a04","originalAuthorName":"崔爱民"},{"authorName":"李焕喜","id":"e834c7a1-16e0-4ffd-aa46-46ac3ce55b47","originalAuthorName":"李焕喜"}],"doi":"","fpage":"23","id":"745aeeda-64fc-4297-9c28-c6e62542f9eb","issue":"2","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"6b35a7f9-8249-41e5-a237-8c4e8fef780d","keyword":"废气分析","originalKeyword":"废气分析"},{"id":"4083138b-6fad-401c-b817-45a160ef3939","keyword":"RH","originalKeyword":"RH"},{"id":"e58a7e3f-2ca9-4fd1-82d1-1fc5c32e1304","keyword":"数学模型","originalKeyword":"数学模型"},{"id":"c0581b1b-1162-4bc2-b7c4-f2f6c2fe1124","keyword":"超低碳钢","originalKeyword":"超低碳钢"}],"language":"zh","publisherId":"gt201002005","title":"废气分析在RH脱碳过程中的应用","volume":"45","year":"2010"},{"abstractinfo":"利用工业试验,研究了常规RH和RH-TOP精炼处理IF钢的脱碳过程、钢水氧含量、真空室压力、废气流量及成分、钢水温降的变化.根据表观脱碳速率常数的不同,两种精炼方式下脱碳过程分别呈现\"两段式\"和\"三段式\"变化规律,均可以在20min内稳定生产碳质量分数低于15×10-6的IF钢;吹氧使得真空室压降平台处压力升高,平台时间延长,不利于提高脱碳速率,且吹氧过量导致脱碳终点氧含量大幅升高.采用RH-TOP吹氧时,CO的二次燃烧产生的热补偿可以降低转炉出钢温度20~30℃.","authors":[{"authorName":"刘柏松","id":"e3b7d486-fb41-4b15-9431-f9ab29b674c5","originalAuthorName":"刘柏松"},{"authorName":"李本海","id":"8092cabc-cb46-4a56-bae6-246d8dbd9642","originalAuthorName":"李本海"},{"authorName":"朱国森","id":"835b8c58-e090-4055-a07e-4e473d74e8cb","originalAuthorName":"朱国森"},{"authorName":"陈斌","id":"f417ad22-8d97-47bb-8b1a-4c8ec92dd747","originalAuthorName":"陈斌"},{"authorName":"崔爱民","id":"925b81a2-f877-403b-9207-83e6904d3ece","originalAuthorName":"崔爱民"},{"authorName":"李焕喜","id":"c44d5a9a-f91d-4f26-afb2-3280f7b77e16","originalAuthorName":"李焕喜"}],"doi":"","fpage":"33","id":"771a9168-79eb-431d-9483-c1640ab37c1d","issue":"8","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"a95cc353-02e3-487b-9949-b70b033851aa","keyword":"RH","originalKeyword":"RH"},{"id":"80d3113b-5334-48fc-b96a-9b5544af8235","keyword":"RH-TOP","originalKeyword":"RH-TOP"},{"id":"40795bee-e77d-4841-bca1-c715931519d3","keyword":"脱碳","originalKeyword":"脱碳"},{"id":"3c0ae162-a930-44f4-bec5-ab569d4ba183","keyword":"IF钢","originalKeyword":"IF钢"},{"id":"47c559ac-8f9e-4f9c-b72e-0ee77a40a8c3","keyword":"超低碳钢","originalKeyword":"超低碳钢"}],"language":"zh","publisherId":"gt201008008","title":"常规RH和RH-TOP工艺精炼IF钢试验研究","volume":"45","year":"2010"},{"abstractinfo":"为研究RHMFB精炼工艺对脱碳过程的影响,将脱碳机理确定为钢液本体脱碳与CO克服静压力上浮、氩气泡表面脱碳和飞溅液滴脱碳,根据脱碳反应动力学和质量守恒原理建立了RHMFB脱碳数学模型。计算结果表明:降低初始碳含量、增大初始氧含量可使脱碳终点碳含量降低;提高压降速率和吹氩流量、增大浸渍管内径使得脱碳速率增大;在固定氧气流量下,随着吹氧时间的延长,脱碳终点碳含量降低,但脱碳终点氧含量升高。","authors":[{"authorName":"韩传基","id":"3b136ea6-badb-47f3-9acc-a9f48e7aad5b","originalAuthorName":"韩传基"},{"authorName":"刘柏松","id":"2a92c94b-326d-4b77-8d0d-4f08d665b6e4","originalAuthorName":"刘柏松"},{"authorName":"艾立群","id":"ecf4eb0e-ea1e-4016-b57e-ab0eb1725d4e","originalAuthorName":"艾立群"},{"authorName":"朱立新","id":"726c7b09-a81d-4c71-bf70-b740b57cc708","originalAuthorName":"朱立新"},{"authorName":"黄宗泽","id":"44ec82fe-4d82-4ecd-bd75-62306fbb05b7","originalAuthorName":"黄宗泽"},{"authorName":"蔡开科","id":"45b70be1-c1ab-4439-b78f-6cc8a9a76b0e","originalAuthorName":"蔡开科"}],"categoryName":"|","doi":"","fpage":"17","id":"e9067dcf-0df8-44bc-9073-170fcbeb0122","issue":"4","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"e56943fb-3a3b-4d0d-862f-d961ea16fdf8","keyword":"RHMFB精炼;数学模型;工艺分析","originalKeyword":"RHMFB精炼;数学模型;工艺分析"}],"language":"zh","publisherId":"1001-0963_2007_4_12","title":"RHMFB精炼过程脱碳数学模型及工艺研究","volume":"19","year":"2007"},{"abstractinfo":"从连铸工艺包括拉速、水口浸入深度、浸入水口出口角度、保护渣性能对超低碳钢热轧卷表面线状缺陷进行深入研究并进行现场工业试验,分析了连铸工艺参数对该类缺陷的影响规律.研究结果表明:将230 mm×1 600 mm断面铸坯,拉速由1.2 m/min降低至1.1 m/min,浸入式水口插入深度由130 mm加深至145 mm,水口出口角度由15°增加到18°,均可对抑制浇铸过程液面波动及提高超低碳钢板卷表面质量起到很好的作用.将超低碳钢保护渣黏度由0.306 Pa·s提高至0.364 Pa·s,熔点由1 089℃降低至1 062℃,可使超低碳钢热轧板卷线状缺陷发生率由8.86%降低至4.49%.","authors":[{"authorName":"罗衍昭","id":"3990465b-3177-43cb-a9c2-84c3faed0a5e","originalAuthorName":"罗衍昭"},{"authorName":"刘柏松","id":"81c5bed5-c21d-4cff-9f70-8ea36537fb55","originalAuthorName":"刘柏松"},{"authorName":"苑鹏","id":"8f2e65fd-03ef-464b-b946-f5e2bcfcc5cf","originalAuthorName":"苑鹏"},{"authorName":"高攀","id":"33fc7b32-9a8e-4b9a-9099-bdcc2b359bae","originalAuthorName":"高攀"},{"authorName":"倪有金","id":"667f6e1c-ca7d-49cc-958a-24ce27737e01","originalAuthorName":"倪有金"},{"authorName":"裴兴伟","id":"4175554b-dbb4-46e2-8dd2-afb204ce97f4","originalAuthorName":"裴兴伟"}],"doi":"10.13228/j.boyuan.issn1005-4006.20160063","fpage":"62","id":"4073382f-325b-419a-82dd-a4fbc1716c96","issue":"5","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"08dd2d97-c30f-4ce5-8fd7-292f4f3046c9","keyword":"超低碳钢","originalKeyword":"超低碳钢"},{"id":"1cf8e4c5-79ba-46dd-bb15-17618981fffb","keyword":"线状缺陷","originalKeyword":"线状缺陷"},{"id":"bc3b4778-cb95-4b31-8301-44430f1f7405","keyword":"连铸工艺","originalKeyword":"连铸工艺"},{"id":"cb9e865a-7598-4568-9b61-b0d86a555f5d","keyword":"保护渣","originalKeyword":"保护渣"}],"language":"zh","publisherId":"lz201605014","title":"连铸工艺对超低碳钢表面线状缺陷的影响分析","volume":"41","year":"2016"},{"abstractinfo":"结合IF钢连铸工艺过程,对影响增碳的主要因素进行了分析.结果表明:中间包覆盖剂对增碳量有很大的影响,必须控制中间包覆盖剂碳质量分数小于1%;控制中间包耐材碳质量分数和加覆盖剂操作,可以大大减少增碳量,降低成品碳质量分数.","authors":[{"authorName":"庞在刚","id":"351f1050-2441-4ef7-baaf-a4a9ebff12f7","originalAuthorName":"庞在刚"},{"authorName":"刘柏松","id":"7e54b0d3-09d1-4a4d-8492-b196a7d711bc","originalAuthorName":"刘柏松"},{"authorName":"陈斌","id":"acb7ec3e-ec49-48ee-89e2-c73bda7b4314","originalAuthorName":"陈斌"}],"doi":"10.13228/j.boyuan.issn1005-4006.20140096","fpage":"1","id":"5a6d6f42-4a0a-4c05-8241-425e5716f9c4","issue":"3","journal":{"abbrevTitle":"LZ","coverImgSrc":"journal/img/cover/LZ.jpg","id":"52","issnPpub":"1005-4006","publisherId":"LZ","title":"连铸"},"keywords":[{"id":"72e0c9a2-e299-49f1-9c3a-c5f426bf6d06","keyword":"IF钢","originalKeyword":"IF钢"},{"id":"3d78065c-e44c-495f-955d-1e74120827b4","keyword":"增碳","originalKeyword":"增碳"},{"id":"b3ca8cd4-e04d-46a2-8450-6b51d7905e70","keyword":"连铸","originalKeyword":"连铸"}],"language":"zh","publisherId":"lz201503001","title":"IF钢连铸增碳控制","volume":"41","year":"2015"},{"abstractinfo":"刘文中,关于贝氏体形成机制,包括形核过程的文献很少被引述。作者(刘等)的主要论点为贝氏体铁素体以无扩散、非切变机制在奥氏体内贫碳区形核,并未引述形成贫碳区的必要条件。本文作者强调,在钢及铜合金中,不可能由Spinodal分解和位错偏聚形成贫溶质区。刘等的理念未得到先进理论观点和精细实验结果的支持。在刘文中,据此对临界核心大小和形核能的计算并无显著意义,期望青年学者对贝氏体相变机制作进一步研究。","authors":[{"authorName":"徐祖耀","id":"f5bc6b26-ec4d-45e7-a1da-067daa9d3115","originalAuthorName":"徐祖耀"}],"doi":"","fpage":"158","id":"66a9e9e8-09a0-408c-8c33-bc00aeff35c0","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"5224cfe0-dd6d-4ccc-aac3-2bed80f388a5","keyword":"贝氏体形核","originalKeyword":"贝氏体形核"},{"id":"cae16aae-8a2b-43f5-9886-1ca5759c5972","keyword":"扩散机制","originalKeyword":"扩散机制"},{"id":"36bc9f8f-ee13-4c27-8020-c2c5b0dfca8f","keyword":"切变机制","originalKeyword":"切变机制"},{"id":"a3bb808d-ba7a-4c9a-90ff-d5e59a6a0f1a","keyword":"贫碳区","originalKeyword":"贫碳区"}],"language":"zh","publisherId":"jsrclxb201202033","title":"评刘宗昌等《贝氏体铁素体的形核》一文","volume":"33","year":"2012"},{"abstractinfo":"利用质子激发X射线荧光分析(PIXE)测试分析汝官瓷、张公巷窑青瓷和刘家门窑青瓷样品的主要化学组成,用多元统计判别分析方法对数据进行分析,以确定它们的分类和起源关系.结果表明:汝官瓷、张公巷窑青瓷和刘家门窑青瓷釉基本能很好的区分;但是胎区分得不是很理想,张公巷窑青瓷的胎可以和汝官瓷、刘家门窑青瓷胎很好的区分,汝官瓷胎和刘家门窑青瓷胎有个别样品不能分开.","authors":[{"authorName":"蔡敏敏","id":"bf1f4660-208a-4999-ac81-266bf48c5bcb","originalAuthorName":"蔡敏敏"},{"authorName":"李国霞","id":"f8d3a4dc-7472-4dd6-9382-9f4430feef58","originalAuthorName":"李国霞"},{"authorName":"赵维娟","id":"9572b140-eca3-4192-af6e-ab9fdb21502b","originalAuthorName":"赵维娟"},{"authorName":"李融武","id":"e2d1fb82-016c-4ae3-9ee6-0cabbe60a2a0","originalAuthorName":"李融武"},{"authorName":"赵文军","id":"ea875a05-c1f7-4a8f-b405-2005de7db87c","originalAuthorName":"赵文军"},{"authorName":"承焕生","id":"9ff5fa85-a1fb-4cd2-bdc3-3bd240fd6894","originalAuthorName":"承焕生"},{"authorName":"郭敏","id":"d4074d21-787e-429b-8123-a13fcf5ce433","originalAuthorName":"郭敏"}],"doi":"","fpage":"1363","id":"f1ea8842-b3fe-42a2-9557-aa4c186cac5a","issue":"6","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"d281b6ff-a4b5-41d8-ad69-47236e801de5","keyword":"汝官瓷","originalKeyword":"汝官瓷"},{"id":"adf8b648-9625-4b38-96ff-ec6174d0c5d4","keyword":"张公巷窑青瓷","originalKeyword":"张公巷窑青瓷"},{"id":"3a61e23c-a3f8-43e6-84fc-1b7cd4edef5b","keyword":"刘家门窑青瓷","originalKeyword":"刘家门窑青瓷"},{"id":"494e2983-99cd-4c53-a919-4bfad5b7c54a","keyword":"判别分析","originalKeyword":"判别分析"}],"language":"zh","publisherId":"gsytb201206005","title":"汝官瓷、张公巷窑青瓷和刘家门窑青瓷的判别分析研究","volume":"31","year":"2012"},{"abstractinfo":"采用湿法球磨工艺,通过调整银粉和球的比例、球径大小、球磨时间制备出低松装密度片状银粉.该银粉的松装密度小于1.0 g/cm3,粒径大小可调,粉末的体积和比表面积大,已成功地应用于制备银浆,并可起到降低银含量,提高浆料粘度和导电性能的作用.","authors":[{"authorName":"李晓龙","id":"25c4280e-54fe-49dd-82c2-887eaf84390e","originalAuthorName":"李晓龙"},{"authorName":"黄富春","id":"1fc9dbba-07d4-4fce-b706-0d4515b1c722","originalAuthorName":"黄富春"},{"authorName":"李文琳","id":"6008e8bd-33fc-452d-997c-e2d1947f2ae3","originalAuthorName":"李文琳"},{"authorName":"赵玲","id":"840f7840-9658-43cd-9b3b-898a7b963266","originalAuthorName":"赵玲"},{"authorName":"陈伏生","id":"c8f077f9-1fc4-412b-abc7-f7673cea66eb","originalAuthorName":"陈伏生"}],"doi":"10.3969/j.issn.1004-0676.2012.01.004","fpage":"16","id":"49d89c85-24e3-4fd4-b613-ce648e95c1ef","issue":"1","journal":{"abbrevTitle":"GJS","coverImgSrc":"journal/img/cover/GJS.jpg","id":"38","issnPpub":"1004-0676","publisherId":"GJS","title":"贵金属"},"keywords":[{"id":"8058b128-5dc7-4c0b-97a5-b4b0fe26399f","keyword":"金属材料","originalKeyword":"金属材料"},{"id":"2b43ac94-938f-4a1e-8f32-4d26a6750e64","keyword":"片状银粉","originalKeyword":"片状银粉"},{"id":"013a6f13-b77b-4a64-9afa-584843c03cdd","keyword":"导电性能","originalKeyword":"导电性能"},{"id":"3f85c3cc-e3a4-4ef9-b9ce-e92c5e497e10","keyword":"银含量","originalKeyword":"银含量"},{"id":"71060ab6-b553-4b33-8bb1-2cde4d6480db","keyword":"混合银粉","originalKeyword":"混合银粉"},{"id":"5904b987-fee7-4932-aab7-b41eb2fe8192","keyword":"粘度","originalKeyword":"粘度"}],"language":"zh","publisherId":"gjs201201004","title":"低松装密度片状银粉的研究","volume":"33","year":"2012"}],"totalpage":38,"totalrecord":380}