{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用射频磁控溅射法在本征(100)Si片上和CVD金刚石膜上制备了立方(222)择优取向的Y2O3薄膜,应用AFM观察薄膜的三维形貌表明薄膜表面晶粒致密,缺陷较少,表面粗糙度为8.7 nm;TEM表征薄膜微观结构,表明薄膜为柱状晶结构,柱状晶宽度10~20 nm,而且晶界明显,部分较大晶粒中存在些许位错缺陷;纳米力学探针和划痕仪表征薄膜的力学性能,表明薄膜硬度为20.73 GPa,弹性模量为227.5 GPa,可作为金刚石膜的抗氧化保护膜,并且与金刚石膜的结合较好,结合力约为5N;FHR对薄膜的光学性能进行分析,表明双面立方Y2O3薄膜对金刚石膜的最大增透为23%,基本符合Y2O3的理论增透效果.","authors":[{"authorName":"王猛","id":"2f21555b-8a97-4874-853c-ba29320a19d1","originalAuthorName":"王猛"},{"authorName":"李成明","id":"73d4d212-e4ca-4447-b7b5-9002eff4a8a3","originalAuthorName":"李成明"},{"authorName":"朱瑞华","id":"64639f9a-f06f-4431-9c97-086194fe7dc9","originalAuthorName":"朱瑞华"},{"authorName":"刘金龙","id":"4df808a7-6b70-4fd9-9fe5-3958962a60a8","originalAuthorName":"刘金龙"},{"authorName":"陈良贤","id":"fe068288-aa74-4dac-aa8f-30368f6c13fd","originalAuthorName":"陈良贤"},{"authorName":"魏俊俊","id":"6902c3e5-d17a-4294-9842-be9a8d0855b1","originalAuthorName":"魏俊俊"},{"authorName":"黑立富","id":"426d8b29-e425-4719-8844-9379e994ac4e","originalAuthorName":"黑立富"}],"doi":"","fpage":"25","id":"59c4e96e-d34b-49a5-b9c4-792a61599cce","issue":"1","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"13085a7a-a0d3-4871-bc4e-52f75cd71e10","keyword":"Y2O3薄膜","originalKeyword":"Y2O3薄膜"},{"id":"df5d4057-b3c9-4fa6-9857-88dbc4fa7587","keyword":"射频","originalKeyword":"射频磁控"},{"id":"8ef68afe-b533-4f34-8c91-14deb38869f0","keyword":"缺陷","originalKeyword":"缺陷"}],"language":"zh","publisherId":"rgjtxb98201401005","title":"立方Y2O3薄膜结构、力学及光学性能的研究","volume":"43","year":"2014"},{"abstractinfo":"采用射频反应溅射法在单晶硅片上制备了氧化硅(SiOx)薄膜,分析了薄膜的主要成分,研究了制备工艺对薄膜表面形貌和电击穿场强的影响.结果表明:薄膜的主要成分为氧化硅(SiOx);退火前后,薄膜的表面粗糙度由原来的1.058nm下降至0.785nm,峰与谷之间的高度差由原来的7.414nm降低至5.046nm;薄膜的电击穿场强随溅射功率的增加先增大后减小,通过800℃/100 s的快速热退火,在各种射频功率下制备的薄膜电击穿场强都有明显升高.薄膜的绝缘性能显著增强.","authors":[{"authorName":"金桂","id":"854bab08-f175-4c12-ac09-eadd281d0e0d","originalAuthorName":"金桂"},{"authorName":"蒋纯志","id":"2436d1a6-bb4f-4611-8ceb-15d70dd93f8c","originalAuthorName":"蒋纯志"},{"authorName":"邓海明","id":"54ba5fa7-0a7a-4468-8e6e-48a2e03d303f","originalAuthorName":"邓海明"}],"doi":"10.3969/j.issn.1009-9239.2009.03.005","fpage":"20","id":"2da81e60-388e-4395-a32e-eaf52c3ce345","issue":"3","journal":{"abbrevTitle":"JYCL","coverImgSrc":"journal/img/cover/JYCL.jpg","id":"50","issnPpub":"1009-9239","publisherId":"JYCL","title":"绝缘材料"},"keywords":[{"id":"7b913652-14ec-42ca-a909-27978f850868","keyword":"射频反应溅射","originalKeyword":"射频磁控反应溅射"},{"id":"815f24d5-b388-4a76-a5bb-441a5e32004f","keyword":"表面形貌","originalKeyword":"表面形貌"},{"id":"a8af794e-6469-4d76-b03d-b7232a6d5a15","keyword":"电击穿场强","originalKeyword":"电击穿场强"}],"language":"zh","publisherId":"jycltx200903005","title":"射频反应溅射氧化硅薄膜微结构和电击穿场强研究","volume":"42","year":"2009"},{"abstractinfo":"为提高射频溅射成膜率,本文报道了一种配置于磁控溅射装置的射频(RF)增装置.基于此装置的实验结果表明,在不对原有装置作任何改动的情况下,在完全相同的溅射参数下,采用此装置可使射频溅射成膜率增大为原来的4倍左右.进而,该装置提供了一种能有效地节省溅射制备时间,改善薄膜结构的简便易行的新型手段.","authors":[{"authorName":"王怀义","id":"49c14864-92c3-4dab-8508-5cfd747646ec","originalAuthorName":"王怀义"},{"authorName":"刁训刚","id":"fe96c8fa-557f-4d0e-a6ec-3ffceec418a2","originalAuthorName":"刁训刚"},{"authorName":"王聪","id":"976c215b-e19d-4ccc-a093-c3fe16293445","originalAuthorName":"王聪"},{"authorName":"郝维昌","id":"54526519-7824-417e-9483-a60ae0c1e1ad","originalAuthorName":"郝维昌"},{"authorName":"王天民","id":"bb58fbf0-de5d-42c2-ab46-d466b62e12b5","originalAuthorName":"王天民"}],"doi":"10.3969/j.issn.1007-4252.2011.03.001","fpage":"237","id":"bacb1b78-50ef-4e91-8982-3be3e1956375","issue":"3","journal":{"abbrevTitle":"GNCLYQJXB","coverImgSrc":"journal/img/cover/GNCLYQJXB.jpg","id":"34","issnPpub":"1007-4252","publisherId":"GNCLYQJXB","title":"功能材料与器件学报 "},"keywords":[{"id":"301ba205-b86d-4b52-9ea5-3daaafd2e9b7","keyword":"射频磁控溅射","originalKeyword":"射频磁控溅射"},{"id":"1df263ac-c949-476d-9180-0ef7d566f89e","keyword":"增装置","originalKeyword":"增磁装置"},{"id":"a5b42e7c-31c8-4212-bca0-2d11224cab98","keyword":"沉积速率","originalKeyword":"沉积速率"},{"id":"b0c096a5-da8c-4fa7-b8b1-78834eaf60f7","keyword":"薄膜结钩","originalKeyword":"薄膜结钩"}],"language":"zh","publisherId":"gnclyqjxb201103001","title":"一种增装置在射频溅射制备薄膜中的应用","volume":"17","year":"2011"},{"abstractinfo":"流变胶(MRG)是一种新型智能材料,具有流变效应高,不沉降等特点,而且电阻率会随外加磁场强度增加发生显著变化。论文设计了MRG电阻测试装置,研究了基体的粘度、铁粉质量分数对 MRG 电阻特性的影响,实验揭示了流变胶在不同磁场下电阻率的变化规律,并进行了初步的理论分析。为了降低MRG的零场电阻率,尝试添加少量石墨进行改性,取得明显效果。","authors":[{"authorName":"刘术志","id":"1959dba8-570e-4d99-9ded-5b2844919d67","originalAuthorName":"刘术志"},{"authorName":"余淼","id":"7cbb69a3-cf08-40c5-821d-dd9852255e7c","originalAuthorName":"余淼"},{"authorName":"杨平安","id":"8094d9b8-612e-46ab-81fa-01afca8f0077","originalAuthorName":"杨平安"},{"authorName":"浮洁","id":"95edba66-ffcb-49f2-8c4b-b9d3621e84d2","originalAuthorName":"浮洁"}],"doi":"10.3969/j.issn.1001-9731.2016.07.013","fpage":"7066","id":"a8beb7aa-d2a6-4d05-93e2-55e701cb8221","issue":"7","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"aa0052c8-d822-464f-afc5-292add18047b","keyword":"流变胶","originalKeyword":"磁流变胶"},{"id":"36dfc390-5778-461b-b307-b7ef1572ccc4","keyword":"电阻率","originalKeyword":"电阻率"},{"id":"19877f50-a397-4c74-975a-86e2e70c7ee8","keyword":"致效应","originalKeyword":"磁致效应"},{"id":"9f54b8e0-7ec1-418f-8801-3b77f4219374","keyword":"石墨","originalKeyword":"石墨"}],"language":"zh","publisherId":"gncl201607013","title":"聚氨酯基流变胶电阻特性研究?","volume":"47","year":"2016"},{"abstractinfo":"利用射频反应溅射以Ar、CH4为原料气体,在较宽的工艺参数范围内制备出了GexC1-x薄膜.利用X射线衍射(XRD)、X射线光电子谱(XPS)对制备的薄膜进行了分析.结果表明,GexC1-x薄膜的结构强烈依赖于制备的工艺参数.当沉积温度较低、射频功率不大时,GexC1-x薄膜主要为非晶态结构.随着沉积温度升高、射频功率增大,薄膜中出现Ge微晶相.GexC1-x薄膜中Ge与C发生电荷的转移,形成化学键.","authors":[{"authorName":"刘正堂","id":"9a31eeff-d9b6-4d69-8f0f-e749d232d2a4","originalAuthorName":"刘正堂"},{"authorName":"耿东生","id":"4d0481f6-7b6a-4518-bba4-77935c57da1e","originalAuthorName":"耿东生"},{"authorName":"宋建全","id":"ae844488-b804-4d73-8a5a-ba6b7d1884be","originalAuthorName":"宋建全"},{"authorName":"朱景芝","id":"e97b79af-a7e0-4638-8bf2-64324603c846","originalAuthorName":"朱景芝"},{"authorName":"郑修麟","id":"de8f416b-8b5a-4354-8971-9ff86746a145","originalAuthorName":"郑修麟"}],"doi":"10.3969/j.issn.1009-6264.2000.02.016","fpage":"95","id":"0bd376db-8fdd-4b5a-8427-82a578f958f6","issue":"2","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"a3c68cfd-78f3-43ae-93d2-0ee7f317dd7d","keyword":"GexC1-x薄膜","originalKeyword":"GexC1-x薄膜"},{"id":"a4057ea8-d514-4de4-8bf4-792401e96c45","keyword":"反应溅射","originalKeyword":"磁控反应溅射"},{"id":"dc005a0f-85d7-4d72-bddf-77b02227edfc","keyword":"薄膜结构","originalKeyword":"薄膜结构"}],"language":"zh","publisherId":"jsrclxb200002016","title":"反应溅射制备GexC1-x薄膜的结构","volume":"21","year":"2000"},{"abstractinfo":"利用射频反应溅射法,以Ar,CH4为原料气体,在较宽的工艺参数范围内制备出了GexC1-x薄膜,用干涉法测量了薄膜的厚度,对GexC1-x薄膜的沉积速率和Ge原子百分比进行了研究.结果表明,GexC1-x薄膜的沉积速率并没有随着靶中毒后而显著下降,甚至略有提高,而且Ge原子百分比可以任意变化,表现出与通常反应溅射法不同的特征,这与靶中毒之后反应气体粒子在靶面和基片上的反应特点有关.这一结论对反应溅射法制备碳化物有普遍意义.","authors":[{"authorName":"宋建全","id":"ff908795-64fc-49d5-b604-bd8f5638b20c","originalAuthorName":"宋建全"},{"authorName":"刘正堂","id":"cb24152f-dcc9-442d-bbd4-5561b41bd7a4","originalAuthorName":"刘正堂"},{"authorName":"于忠奇","id":"09e612bb-0d58-4700-80c1-fe6dd2492d1f","originalAuthorName":"于忠奇"},{"authorName":"耿东生","id":"f4e9976e-9884-42da-a1b8-11e733778ce0","originalAuthorName":"耿东生"},{"authorName":"郑修麟","id":"846993c8-7d76-457d-806a-401869030661","originalAuthorName":"郑修麟"}],"doi":"10.3969/j.issn.1001-4381.2000.10.004","fpage":"15","id":"be035aff-1a5d-4779-abda-b133a4d0931b","issue":"10","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"fcb414df-c0d7-42e1-9b4e-fa04d5153698","keyword":"沉积速率","originalKeyword":"沉积速率"},{"id":"9cd84008-a633-40a4-b338-a064e6cb3c93","keyword":"反应溅射","originalKeyword":"磁控反应溅射"},{"id":"e6793946-2e13-4943-bd0c-b788bb41698a","keyword":"靶中毒","originalKeyword":"靶中毒"},{"id":"a9747522-21c2-40e2-aff8-635e7e67ceb4","keyword":"原子百分比","originalKeyword":"原子百分比"}],"language":"zh","publisherId":"clgc200010004","title":"反应溅射制备GexC1-x薄膜的特殊性分析","volume":"","year":"2000"},{"abstractinfo":"介绍了毫米波回旋速调管注入电子枪的结构与特点. 依据回旋管对电子枪的要求, 考虑相对论效应和空间电荷效应, 编制了一套计算程序. 利用电子枪模拟程序对电子轨迹进行模拟计算, 研究了电极形状、磁场分布以及电子轨迹与电子注参量的影响, 为注入电子枪的设计提供了理论依据.","authors":[{"authorName":"赵青","id":"3a5ff8fc-da93-4b4d-8262-90599680c9c1","originalAuthorName":"赵青"},{"authorName":"李宏福","id":"b11633e1-0b95-4954-837f-972fb95def10","originalAuthorName":"李宏福"},{"authorName":"任同","id":"f0220de2-fe42-41e2-ac11-5fd8d0880c61","originalAuthorName":"任同"},{"authorName":"罗勇","id":"8540a708-bc45-4b76-bd89-76661d93d4da","originalAuthorName":"罗勇"}],"doi":"10.3969/j.issn.1007-4627.2003.04.008","fpage":"264","id":"4e6aafde-ebd4-4010-9175-d897c5340a0f","issue":"4","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"cf26b45d-b408-4747-8b47-c0850a0a29c9","keyword":"注入电子枪","originalKeyword":"磁控注入电子枪"},{"id":"0637e789-1847-45c6-9d27-24b48f10477a","keyword":"模拟计算","originalKeyword":"模拟计算"},{"id":"112c4325-881e-4371-9a3e-13073c4d01df","keyword":"电子注","originalKeyword":"电子注"},{"id":"39203d57-1797-4fec-9d4b-2653780e5164","keyword":"电极形状","originalKeyword":"电极形状"}],"language":"zh","publisherId":"yzhwlpl200304008","title":"注入电子枪的研究","volume":"20","year":"2003"},{"abstractinfo":"证实了Ni53.2Mn22.6Ga24.2单晶发生的两步马氏体相变行为是完全热弹性的.在磁场作用下,该材料的马氏体相变和中问马氏体相变展现出相同的应变特征,且具有双向形状记忆效应.磁场下应力-应变特性的测量结果表明,磁场不但对压应力诱发马氏体相变过程中变体重取向所需应力的大小有影响,而且使原来不可逆的形变成为可逆,这种超弹性特性预示了该合金用作超弹性元器件材料的可能性.","authors":[{"authorName":"游素琴","id":"2758e20d-95fd-46cc-a980-637a7469dc15","originalAuthorName":"游素琴"},{"authorName":"崔玉亭","id":"41fa176b-3a01-49c2-bb5e-87e43793ea2e","originalAuthorName":"崔玉亭"},{"authorName":"武亮","id":"eb3ee616-994c-4e6a-9df3-0b7204b4c0ac","originalAuthorName":"武亮"},{"authorName":"孔春阳","id":"f8afd371-dd9c-44aa-9ac2-3e81c2d28842","originalAuthorName":"孔春阳"},{"authorName":"马勇","id":"3c881e08-be7d-4ddd-88c1-a8250cad3b9b","originalAuthorName":"马勇"},{"authorName":"杨晓红","id":"bcbb5519-80a2-49b0-a87f-63926ea369a1","originalAuthorName":"杨晓红"},{"authorName":"潘复生","id":"95ac6bd0-7ab0-4fb9-9fa5-f2677d8c2569","originalAuthorName":"潘复生"}],"doi":"10.3321/j.issn:0412-1961.2009.03.016","fpage":"351","id":"4d6f52a9-ca8a-4988-b0c4-060130f9f729","issue":"3","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"68393eab-88ac-4c59-8269-0505a0e0cc54","keyword":"Ni-Mn-Ga合金","originalKeyword":"Ni-Mn-Ga合金"},{"id":"cb7f837b-9bef-4795-9e23-056100ff3475","keyword":"马氏体相变","originalKeyword":"马氏体相变"},{"id":"cfbbeb60-5f52-4d07-a323-326b6d913152","keyword":"形状记忆效应","originalKeyword":"形状记忆效应"},{"id":"ac2cdfda-2372-4370-be39-8a21849f7263","keyword":"超弹性","originalKeyword":"超弹性"}],"language":"zh","publisherId":"jsxb200903016","title":"Ni53.2Mn22.6Ga24.2单晶的形状记忆效应和超弹性特性","volume":"45","year":"2009"},{"abstractinfo":"制备了4种钕铁硼粉填充型敏弹性体和4种羰基铁粉与钕铁硼粉混合填充的敏弹性体,对上述敏弹性体进行不同强度充磁,并利用数码显微镜观察其微观结构,使用振动样品磁强计测试了样品的磁化特性曲线,采用流变仪对敏弹性体的力学性能进行测试,分析不同充磁强度对钕铁硼粉填充型敏弹性体力学性能的影响,以及硬颗粒的质量分数与剩磁对敏弹性体力学性能的影响.结果表明,充磁强度越大,钕铁硼粉填充型敏弹性体力学性能受磁场影响越大,适量的硬颗粒、增大充磁能提高敏弹性体范围.","authors":[{"authorName":"赵慧婷","id":"fbba4802-7e95-4479-b710-eec0fdd78d49","originalAuthorName":"赵慧婷"},{"authorName":"廖昌荣","id":"ad456fc7-f659-4032-b6d1-f91ec7b10a45","originalAuthorName":"廖昌荣"},{"authorName":"章鹏","id":"8c68dad5-5b43-4f67-af53-d86cf7a018b0","originalAuthorName":"章鹏"},{"authorName":"简晓春","id":"8f45efe5-71ee-47b8-a49c-fa3d76986d0f","originalAuthorName":"简晓春"}],"doi":"10.11901/1005.3093.2015.551","fpage":"457","id":"3d9cdd13-4852-40f9-822b-c76d67a82ab6","issue":"6","journal":{"abbrevTitle":"CLYJXB","coverImgSrc":"journal/img/cover/CLYJXB.jpg","id":"16","issnPpub":"1005-3093","publisherId":"CLYJXB","title":"材料研究学报"},"keywords":[{"id":"bb71720d-9ca9-47c6-a433-9a60446808d7","keyword":"有机高分子材料","originalKeyword":"有机高分子材料"},{"id":"1c65edba-8bfd-4135-9ce1-f0c8b4436129","keyword":"敏弹性体","originalKeyword":"磁敏弹性体"},{"id":"08f4c402-73b8-4026-a266-c01d28910b5e","keyword":"力学性能","originalKeyword":"磁控力学性能"},{"id":"2190ace4-f98d-4bbc-8356-2b5e2b4acaf7","keyword":"硬颗粒","originalKeyword":"硬磁颗粒"},{"id":"a9c8b6b3-9be1-4457-89cd-8ce327167c38","keyword":"剪切储能模量","originalKeyword":"剪切储能模量"}],"language":"zh","publisherId":"clyjxb201606008","title":"硬颗粒填充与充磁对敏弹性体力学行为的影响","volume":"30","year":"2016"},{"abstractinfo":"利用Jones矩阵研究磁场作用下液晶的效应,讨论外加磁场与液晶光轴旋转角的关系,并就不同的旋转角进行分析,加以实验测试,给出Jones矩阵的具体形式.通过磁场对液晶的调制,可以根据需要制成各种偏振器件.","authors":[{"authorName":"任广军","id":"a2e8a245-9169-4a01-b5a8-fd71a937fb10","originalAuthorName":"任广军"},{"authorName":"李国华","id":"4a17d44c-9fb4-4312-94ca-68eec9912427","originalAuthorName":"李国华"}],"doi":"10.3969/j.issn.1007-2780.2003.05.008","fpage":"357","id":"b9d733e7-af8e-4cf1-8558-7785bae604c6","issue":"5","journal":{"abbrevTitle":"YJYXS","coverImgSrc":"journal/img/cover/YJYXS.jpg","id":"72","issnPpub":"1007-2780","publisherId":"YJYXS","title":"液晶与显示 "},"keywords":[{"id":"a0b632a0-943f-4ff3-866f-0a84e1b14cd3","keyword":"液晶","originalKeyword":"液晶"},{"id":"d79d7c80-678b-41bf-b6d1-d9ddd7004871","keyword":"Jones矩阵","originalKeyword":"Jones矩阵"},{"id":"95653ca9-5e09-4ff1-b3eb-140bb65a2812","keyword":"磁场","originalKeyword":"磁场"}],"language":"zh","publisherId":"yjyxs200305008","title":"液晶效应的Jones矩阵研究","volume":"18","year":"2003"}],"totalpage":691,"totalrecord":6904}