{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":1,"startPagecode":1},"records":[{"abstractinfo":"目前,有关新型防腐蚀涂料在架空导线钢芯铝铰线(ACSR)上的应用研究报道不多.选择W61-3有机硅树脂、919-1改性树脂和HWS-2环氧树脂3类新型工业防腐蚀涂料对ACSR进行涂覆处理,并对其进行110℃耐热老化试验、乙酸盐雾和乙酸盐溶液浸泡试验,研究了涂覆处理前后ACSR试样的形貌、电导率和力学性能等的变化,并分析了影响因素和机理.结果表明:涂有919-1型和HWS-2型涂料的试样增重明显.在110℃耐热老化试验后,涂有919-1型和HWS-2型涂料的试样出现明显的老化现象,而涂有W61-3型涂料的试样变化不明显,3组试样的电导率和抗拉强度均无明显变化.乙酸盐雾试验对3组试样的电导率和抗拉强度影响不大.乙酸盐溶液浸泡后3组试样的电导率和抗拉强度均有所下降,但涂有W61-3型涂料的试样下降较少.W61-3有机硅树脂型涂料的涂覆给ACSR导线提供了更好的耐温性和耐酸性盐溶液侵蚀能力.","authors":[{"authorName":"李明东","id":"5976530b-6cae-4267-9aef-f8f6cee7cbd4","originalAuthorName":"李明东"},{"authorName":"冯杰","id":"17ec6eb4-70e7-44d3-a767-7f788b728c00","originalAuthorName":"冯杰"},{"authorName":"毛健","id":"5852c437-0d30-43da-b652-a0d61a78a8bd","originalAuthorName":"毛健"}],"doi":"","fpage":"84","id":"328c224c-3512-4a87-8b36-155d7bc2e450","issue":"11","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"024c64db-7a0e-4da8-b147-51399047eecf","keyword":"防腐蚀涂料","originalKeyword":"防腐蚀涂料"},{"id":"2cb106d9-89d2-48cf-94dd-ebcdb0485bab","keyword":"ACSR","originalKeyword":"ACSR"},{"id":"f2358f3c-5dcf-4c9b-878b-91df0b3ac7aa","keyword":"老化","originalKeyword":"老化"},{"id":"dfaaca54-88b9-45fe-a0f9-ed5bd9c7844a","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh201611021","title":"新型防腐蚀涂料在高压输电导线上的应用","volume":"49","year":"2016"},{"abstractinfo":"采用干/湿NaCl盐雾试验,研究了钢芯铝绞(ACSR)导线腐蚀产物的相组成、腐蚀层结构及其腐蚀机理.结果表明:ACSR导线的腐蚀是氧化膜的局部破坏(形成麻点和缺口)及线股间电化学腐蚀等共同作用的结果.ACSR导线腐蚀产物组成复杂,主要包括锌及铝的氢氧化物及碱式氯化物盐.内外层Al股线及钢芯线表面镀锌层开始生成局部的麻点,然后形成连续的腐蚀层,腐蚀层内层致密而外层疏松.在腐蚀前期(≤168 h),外层铝股线的腐蚀速率大于内层铝股线,在腐蚀后期,内层铝股线的腐蚀速率更大.镀锌层的腐蚀速率最大,480 h腐蚀后完全被破坏,逐渐失去对钢芯线的保护作用.","authors":[{"authorName":"张建堃","id":"a27d335e-e643-4c6f-92d5-544b7569399c","originalAuthorName":"张建堃"},{"authorName":"陈国宏","id":"f6bd38e8-b0a0-4192-914c-ea05885ec7d6","originalAuthorName":"陈国宏"},{"authorName":"王家庆","id":"445d0214-1c8b-4c58-932d-3093f2424664","originalAuthorName":"王家庆"},{"authorName":"张涛","id":"8e8ed36b-f35f-4b2e-9682-60945eccb543","originalAuthorName":"张涛"},{"authorName":"徐光青","id":"f2a1d580-6578-43e7-913d-e4e7f81555d0","originalAuthorName":"徐光青"},{"authorName":"汤文明","id":"a6ac07ca-d784-4f0f-8078-10c232b0d21b","originalAuthorName":"汤文明"}],"doi":"","fpage":"581","id":"7c4794f1-d61c-4e38-a588-259b2d37594f","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"b595858a-abba-45b3-b6ac-baadfb09d9c9","keyword":"钢芯铝绞导线","originalKeyword":"钢芯铝绞导线"},{"id":"6f8780b5-9155-45ba-9f3e-6a4222c9e7bb","keyword":"盐雾试验","originalKeyword":"盐雾试验"},{"id":"e9eedf9a-ce61-4379-b846-9e676120cdec","keyword":"显微结构","originalKeyword":"显微结构"},{"id":"68ecb6ec-dd36-4703-93ba-d8eff3beea66","keyword":"腐蚀机理","originalKeyword":"腐蚀机理"}],"language":"zh","publisherId":"fsyfh201008001","title":"干/湿NaCl盐雾条件下钢芯铝绞(ACSR)导线腐蚀层结构及腐蚀机理","volume":"31","year":"2010"},{"abstractinfo":"为研究在役钢芯铝绞线(ACSR)的腐蚀状态,对典型气候下其各组成部分的腐蚀情况进行了宏观和微观研究,并结合其运行环境,分析了腐蚀原因.结果表明,腐蚀较为严重的是外层铝绞线,局部已出现腐蚀坑,钢芯基体未发生明显腐蚀;腐蚀产物可以降低铝绞线的腐蚀速率,但其对钢芯的腐蚀速率有提高作用.建议应更加注重外层铝绞线的腐蚀监测工作.","authors":[{"authorName":"夏开全","id":"4802e0d1-375b-4562-a89b-5ba9dfc185c7","originalAuthorName":"夏开全"},{"authorName":"于俊超","id":"24712f6a-aca3-4dca-a525-0a1ca584f45d","originalAuthorName":"于俊超"},{"authorName":"邓元婧","id":"90ab7d60-ea9a-46a2-bef0-cb1c6453c867","originalAuthorName":"邓元婧"},{"authorName":"任西春","id":"badb46c3-0956-4574-b3b4-c23811389a2f","originalAuthorName":"任西春"}],"doi":"","fpage":"495","id":"0e7a871c-6a00-4a53-b052-0a6e41df6359","issue":"5","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"d2350072-2e63-4389-88b9-051cefd183d8","keyword":"钢芯铝绞线","originalKeyword":"钢芯铝绞线"},{"id":"3d40944f-45d5-49b1-8333-d6094d534438","keyword":"在役","originalKeyword":"在役"},{"id":"7fdaa729-0a07-4ed7-a3b7-46bba1fe36f7","keyword":"大气腐蚀","originalKeyword":"大气腐蚀"},{"id":"959f67a8-2180-4d26-912d-6459e730ec89","keyword":"外层铝绞线","originalKeyword":"外层铝绞线"},{"id":"b69020fc-8574-487c-89a0-2064634df375","keyword":"监测","originalKeyword":"监测"}],"language":"zh","publisherId":"fsyfh201405022","title":"在役输电线路钢芯铝绞线腐蚀状态评估与分析","volume":"35","year":"2014"},{"abstractinfo":"在自制的微动疲劳试验装置上进行钢芯铝绞导线(ACSR)的微动疲劳试验,采用扫描电子显微镜观察分析内、外层铝股线断口特征,研究其微动疲劳断裂机制.结果表明:铝股线的断股大多发生于导线与线夹的最后接触点处.微动振幅为1.0 mm时,在较低循环周次下(1.6×107),铝股线只发生正断;随着循环次数增加,铝股线断股数量增加,且发生45°及“V”形断裂.铝股线疲劳断口由疲劳源区、疲劳裂纹扩展区、瞬断区构成,呈现弯曲疲劳和扭转疲劳两种不同的断裂方式.","authors":[{"authorName":"王煦","id":"5b4deba0-aab2-4b82-b88e-c9bbbe314134","originalAuthorName":"王煦"},{"authorName":"陈国宏","id":"21e3c921-4c15-4212-8832-135eaff71b63","originalAuthorName":"陈国宏"},{"authorName":"王家庆","id":"98e5ad06-27d8-4fee-b76a-8cfc6d8fff31","originalAuthorName":"王家庆"},{"authorName":"张建堃","id":"ac3cfce7-0642-4b69-8dae-5e3aacc65301","originalAuthorName":"张建堃"},{"authorName":"张涛","id":"85ae3025-6930-4d83-a23a-f7c4dcfc5d1a","originalAuthorName":"张涛"},{"authorName":"徐光青","id":"ecf02a7a-6fbf-4169-8386-20dccd8c4bfe","originalAuthorName":"徐光青"},{"authorName":"汤文明","id":"e174d729-3fa6-4b44-8915-11570147ed47","originalAuthorName":"汤文明"}],"doi":"","fpage":"194","id":"983dfe96-08fe-4908-a07c-63ba00678e9d","issue":"1","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"96069ac8-370b-4fb7-8664-14d98950b348","keyword":"钢芯铝绞导线","originalKeyword":"钢芯铝绞导线"},{"id":"576817bb-110c-4bfe-967e-e9a29717fe61","keyword":"微动疲劳","originalKeyword":"微动疲劳"},{"id":"d6607d2a-8384-48db-a440-ee1b2f2a31ff","keyword":"疲劳断裂","originalKeyword":"疲劳断裂"}],"language":"zh","publisherId":"zgysjsxb201201026","title":"钢芯铝绞架空导线微动疲劳断口形貌","volume":"22","year":"2012"}],"totalpage":1,"totalrecord":4}