贾红雨
,
李成
,
杨洁
,
苏玉珍
玻璃钢/复合材料
doi:10.3969/j.issn.1003-0999.2009.04.010
复合材料运用在飞轮体的制备上,极大地增强了储能飞轮的机械性能,并增加了单位质量中的动能储存效率.利用有限元分析理论结合各向异性弹性体基本理论建立复合材料储能飞轮力学模型,借助ANSYS有限元分析软件,对已知材料性能参数和转子主要形状尺寸的储能飞轮转子进行应力和位移分析,求出了在一定转速条件下转子的径向应力、环向应力和径向位移,对其分布规律进行探讨,为飞轮结构优化提供理论依据.
关键词:
有限元
,
应力分布
,
位移分布
,
ANSYS
,
复合材料储能飞轮
杨洁
,
李成
,
贾红雨
,
苏玉珍
玻璃钢/复合材料
doi:10.3969/j.issn.1003-0999.2009.03.003
纤维增强复合材料具有较高的比强度、比刚度和比模量,在航空航天领域得到越来越广泛的应用.层合板是当前复合材料在工程结构中应用的主要形式.对于含孔的层合板结构,由于材料的各向异性以及孔的影响,其应力分布比较复杂,采用数值解是较好的选择.本文基于层合板的可设计性特点,综合考虑铺层角度、铺层顺序等对层合结构的影响,设计出了一种二十四层对称层合板.以有限元方法为基础,借助ANSYS分析工具,对该层合板含孔结构的孔边应力重点分析,得出了不同铺层角度铺层中应力分布的云图和孔边应力分布曲线.本文结论对复合材料层合板优化设计和带孔层合结构的应力计算具有较好的参考价值.
关键词:
复合材料
,
层合板
,
应力分布
,
有限元
贾红雨
,
张璐璐
玻璃钢/复合材料
doi:10.3969/j.issn.1003-0999.2012.04.010
选用铝合金、钛合金和40Cr三种合金材料,分别分析每种材料在不同旋转角速度条件下的轮毂、轮缘的应力变化规律,利用有限元分析理论结合各向异性弹性体基本理论建立复合材料储能飞轮力学模型,借助ANSYS有限元分析软件,确定易于发生疲劳失效的部位;辅以相同转速条件下,飞轮转子径向和环向应力分析结果,得出铝合金在减小飞轮整体应力水平、优化储能密度方面均优于其他两种合金的结论,完善了选用轮毂材料的基本原则.
关键词:
有限元
,
轮毂
,
应力分布
,
ANSYS
,
复合材料储能飞轮
贾红雨
,
胡继斌
,
陈军营
合成材料老化与应用
doi:10.3969/j.issn.1671-5381.2012.04.008
复合材料飞轮转子的结构设计对储能量有较大影响,其速度的控制有局限性,受多种因素的影响.通过对飞轮系统储能量及储能密度的量化计算,得出影响飞轮储能密度的重要因素,同时对飞轮转子系统进行力学模型的创建,为进一步分析提供了理论基础;选取不同的内外半径比值研究飞轮转子的应力变化,最终确定飞轮转子内外半径比的选用准则,具有实际意义.
关键词:
储能密度
,
飞轮储能系统
,
内外半径比
,
应力分布
张小琴
,
王宇池
,
王永青
,
韩力挥
合成材料老化与应用
目前,低渗透油藏在各大油田分布广泛,其石油储量占未开发石油总量的比重较大.贾敏效应是导致低渗透油藏难以开采、采收率低的一个重要影响因素.采用贾敏指数来评价贾敏损害程度,制取了三种非离子表面活性剂JN-1、JN-2和JN-3,通过筛选得知JN-3降低油水界面张力的能力最强.根据贾敏效应产生的机理以及水井转抽机理,开展了减缓贾敏效应的室内试验研究,结果表明,针对性地向注入水中加入非离子表面活性剂JN-3,可以降低油水界面张力,同时适时地采用水井转抽逆向驱油来增大驱动压差,有效地抑制和减缓了贾敏效应,提高原油采收率.
关键词:
低渗透油藏
,
贾敏效应
,
非离子表面活性剂
,
水井转抽
姜小敏
,
凌志光
,
邓兴勇
工程热物理学报
本文在含尘流透平叶片流道内气固两相流动数值模拟的基础上,发展了叶片冲蚀的数值分析方法,提出了便于工程应用的有限区域内质量加权、面积平均的冲蚀率统计分布计算方法,对建造中的江苏徐州贾旺增压流化床联合循环中试电站燃气轮机叶片冲蚀问题进行了数值模拟,给出了计算结果的数据图象资料,就叶片冲蚀状况进行了分析。
关键词:
透平机械
,
叶片冲蚀
,
数值分析
董彦,龚志翔,肖国华
钢铁研究学报
以指导无取向电工钢热轧工艺为目的,采用Gleeble 1500热模拟试验机进行高温等温压缩,在应变速率为0.01~10s-1和变形温度500~1200℃条件下,对试样进行试验研究。结果表明:随着变形温度的升高,在回复与再结晶过程中发生α-Fe向γ-Fe相的?洌贾挛忍鞅溆αΤ氏帧耙斐!北浠2捎肁rrhenius关系模型,模型参数能很好的与试验结果相吻合。利用模型分别计算得500~800℃时,应力水平因子α=0.0390MPa-1,应力指数n=7.93,结构因子A=1.9×1018 s-1,热变形激活能Q=334.8kJ/mol;1050~1200℃时,应力水平因子α=0.1258MPa-1,应力指数n=5.29,结构因子A=1.0×1028 s-1,热变形激活能Q=769.9kJ/mol。
关键词:
无取向
,
electrical steel
,
high temperature
,
plastic deformation
,
flow stress