{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"横向断裂是制约复合材料结构设计的关键点,传统细观模型因为不能充分考虑组分性能、体积分数和纤维形状及分布情况而不能有效预测材料横向力学性能。采用改进的随机序列吸收算法建立具有随机纤维分布的复合材料代表性体积单胞模型,考虑基体破坏和界面脱粘两种失效模式和固化过程中产生的残余应力,对模型在横向拉、压、剪3种载荷下的力学行为进行仿真计算。分析了不同界面强度对复合材料力学性能的影响规律。仿真结果与实验数据对比表明:横向模量预测误差在7%以内,压缩和剪切的强度误差在8%以内,结果一致性较好,表明该模型能够有效预测复合材料横向力学性能。","authors":[{"authorName":"刘万雷","id":"03f8f3f2-4cf8-4cda-b169-faa18e51107f","originalAuthorName":"刘万雷"},{"authorName":"常新龙","id":"d336df4a-7188-4bb1-a6f0-ab05dead7b89","originalAuthorName":"常新龙"},{"authorName":"张晓军","id":"aeb8113e-e7af-4a5d-b2d5-1fad8a1024ed","originalAuthorName":"张晓军"},{"authorName":"张磊","id":"ff20e6d0-e933-4ccf-a7d8-6ed4adec3838","originalAuthorName":"张磊"}],"doi":"10.11868/j.issn.1001-4381.2016.11.018","fpage":"107","id":"d66f242c-28b5-459d-9834-76995849bd1c","issue":"11","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"767106c5-a638-4fd3-8295-898b339761e5","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"84de9c9e-f269-4521-9f55-6c17a3d97626","keyword":"细观有限元","originalKeyword":"细观有限元"},{"id":"57fea719-e99c-4790-be0a-972bb01d5104","keyword":"残余应力","originalKeyword":"残余应力"},{"id":"720b0ea1-d323-4d3a-ad20-f75e5c1542fa","keyword":"界面强度","originalKeyword":"界面强度"},{"id":"d156d210-1818-427e-bd96-c4a57008aef8","keyword":"横向力学性能","originalKeyword":"横向力学性能"}],"language":"zh","publisherId":"clgc201611018","title":"基于细观有限元方法的复合材料横向力学性能分析","volume":"44","year":"2016"},{"abstractinfo":"建立了考虑纤维随机分布并包含界面的复合材料微观力学数值模型,模拟玻璃纤维/环氧复合材料固化过程中的热残余应力.通过与纤维周期性分布模型的计算结果进行对比,发现纤维分布形式会对复合材料的热残余应力产生重要影响,纤维随机分布情况下的最大热残余应力明显大于纤维周期性分布的情况下.研究了含热残余应力的复合材料在横向拉伸与压缩载荷下的损伤和破坏过程,结果表明:热残余应力的存在显著影响了复合材料的损伤起始位置和扩展路径,削弱了复合材料的横向拉伸和压缩强度.在横向拉伸载荷下,考虑热残余应力后,复合材料的强度有所下降,断裂应变显著降低;在横向压缩载荷下,考虑热残余应力后,复合材料的强度略有下降,但失效应变基本保持不变.由于热残余应力的影响,复合材料的横向拉伸和压缩强度分别下降了10.5%和5.2%.","authors":[{"authorName":"杨雷","id":"8f4400fa-770d-4c67-8998-30b51993cf06","originalAuthorName":"杨雷"},{"authorName":"刘新","id":"4e266809-5e2e-4682-8430-9088c3c19327","originalAuthorName":"刘新"},{"authorName":"高东岳","id":"0b0c7226-9c23-4cd0-a41c-4d7964bd5498","originalAuthorName":"高东岳"},{"authorName":"王阳","id":"0548f242-a66c-43eb-9dca-26c691bccdff","originalAuthorName":"王阳"},{"authorName":"武湛君","id":"514e4267-cc52-43c6-bc60-cf36915dc7d1","originalAuthorName":"武湛君"}],"doi":"10.13801/j.cnki.fhclxb.20150729.001","fpage":"525","id":"f8249d2b-8fbe-4682-90dd-5270f3a83373","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"f734458f-94bc-4ef0-8fbb-abd3711df65a","keyword":"纤维增强复合材料","originalKeyword":"纤维增强复合材料"},{"id":"2efd1a9b-cda7-4606-a0e2-0e3b921b2d93","keyword":"热残余应力","originalKeyword":"热残余应力"},{"id":"46e4e790-0f9c-4701-a109-51bc4eb8b5ef","keyword":"代表性体积单元","originalKeyword":"代表性体积单元"},{"id":"be25b705-6f09-469a-88df-a5375b36e7bf","keyword":"纤维随机分布","originalKeyword":"纤维随机分布"},{"id":"c8106326-24f2-45f9-9c49-4eeca2b6a3a8","keyword":"横向力学性能","originalKeyword":"横向力学性能"},{"id":"b5d266fc-a229-4cb5-9b5c-d52464099d0e","keyword":"数值模拟","originalKeyword":"数值模拟"}],"language":"zh","publisherId":"fhclxb201603011","title":"考虑纤维随机分布的复合材料热残余应力分析及其对横向力学性能的影响","volume":"33","year":"2016"},{"abstractinfo":"采用十字形试样测试分析有C涂层和无C涂层两种SiC纤维增强钛基复合材料的横向力学性能,以横向载荷作用下应力-应变曲线上的非线性拐点计算界面的强度.结果表明,有C涂层的界面横向开裂强度为53 MPa,低于无C涂层的界面开裂强度196 MPa,并且前者在横向载荷作用下沿C涂层与纤维之间开裂,而后者沿反应生成物与基体间开裂;体积分数为30%的多根纤维钛基复合材料的非线性拐点应力低于单根纤维复合材料,这主要是由于残余应力的减少引起,界面强度并没有明显变化.","authors":[{"authorName":"李建康","id":"0a19e1db-09c9-4ff8-9abc-1f16fe5b972f","originalAuthorName":"李建康"},{"authorName":"杨延清","id":"e6ab73a0-2320-42e7-90ae-4cbc5c953225","originalAuthorName":"杨延清"},{"authorName":"罗贤","id":"3a461777-4f01-44e9-bab2-f80dd569f2a4","originalAuthorName":"罗贤"},{"authorName":"张荣军","id":"89e1fbac-d229-4613-bc12-68298064f67e","originalAuthorName":"张荣军"}],"doi":"","fpage":"426","id":"2443ae41-0acc-4351-b4c3-11e7e2513b84","issue":"3","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"5dfd5fa6-eff1-4e2a-9554-3643006093cd","keyword":"钛基复合材料","originalKeyword":"钛基复合材料"},{"id":"8e9be7dc-663e-4c94-8b35-8d332bfcc96e","keyword":"横向力学性能","originalKeyword":"横向力学性能"},{"id":"231444a1-5de4-4faf-a8a2-d1a5cb287459","keyword":"界面强度","originalKeyword":"界面强度"}],"language":"zh","publisherId":"xyjsclygc200903012","title":"SiC纤维增强钛基复合材料的横向力学性能","volume":"38","year":"2009"},{"abstractinfo":"阐明了小锻比锻造的概念,首次提出平面变形化的原理及纵向锥面砧可实现小锻比锻造.应用纵向锥面砧还可实现无横向拉应力锻造,提高轴类锻件的横向力学性能.小锻比锻造新工艺具有广阔的应用前景.","authors":[{"authorName":"刘国晖","id":"d0bb5295-0cb0-4930-a63f-5a6b4957fbf6","originalAuthorName":"刘国晖"}],"doi":"","fpage":"30","id":"3ebecca1-f311-4289-b925-39f0ffceee2d","issue":"11","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"ee072c53-866b-4614-b150-50333d742ae2","keyword":"平面变形化","originalKeyword":"平面变形化"},{"id":"aa19434a-f44c-4b77-868b-9cacd155e808","keyword":"纵向锥面砧","originalKeyword":"纵向锥面砧"},{"id":"002138c7-bf1d-42d2-b9ee-d009c00f59e0","keyword":"无横向拉应力","originalKeyword":"无横向拉应力"},{"id":"68998846-9e4d-48a0-832f-076ef616364d","keyword":"横向力学性能","originalKeyword":"横向力学性能"}],"language":"zh","publisherId":"gt200111009","title":"小锻比锻造新工艺","volume":"36","year":"2001"},{"abstractinfo":"通过对平纹织物复合材料的横向拉压试验,分析了产生各种破坏现象的微观机理.横向压缩过程中,在与水平面成45°方向剪切破坏的同时还出现层间裂纹.由于两个方向上纱线的弯曲程度不同,破坏形式有很大差异,不同自由边处的纱线界面存在不同程度的剪切破坏,并表现出不同的边缘效应.借助显微镜观察和基于代表体积单元的数值模拟对这些现象进行了分析,发现高度不均匀的内部波纹纱线结构在横向压缩下产生的层间剪切应力是出现横向裂纹的主要原因.","authors":[{"authorName":"周平","id":"d01632a7-8b3a-4f08-aba0-165acfcee5af","originalAuthorName":"周平"},{"authorName":"吴承伟","id":"00b202c7-0a8b-455c-812e-aab440399e9d","originalAuthorName":"吴承伟"},{"authorName":"于平","id":"766f4e01-5383-4055-a0d7-93c27b05f816","originalAuthorName":"于平"}],"doi":"10.3321/j.issn:1000-3851.2006.03.032","fpage":"170","id":"d7d75ed4-f8f4-4875-83f6-c85754d7c27c","issue":"3","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"f184bba4-9f7e-4749-8358-9d5e2824d7e2","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"c76bd64b-87a0-4671-9c28-5da69d075350","keyword":"平纹织物","originalKeyword":"平纹织物"},{"id":"4d93ba44-f73b-49db-a8a6-778f2997de75","keyword":"有限元","originalKeyword":"有限元"},{"id":"e3bcbe65-a9c4-4584-a778-b701a04488b8","keyword":"代表体积元","originalKeyword":"代表体积元"}],"language":"zh","publisherId":"fhclxb200603032","title":"平纹织物复合材料横向力学性能研究","volume":"23","year":"2006"},{"abstractinfo":"采用十字形试件,在双轴拉伸条件下研究了尼龙帘线-橡胶复合材料单层板纵向定载荷对横向力学性能的影响和横向定载荷对纵向力学性能的影响.实验结果表明:纵向拉伸载荷对尼龙帘线-橡胶复合材料的横向拉伸力学性能有很大的影响.随着纵向拉伸载荷的增加,横向应力应变关系发生了很大的变化;横向拉伸强度先上升然后又下降;而其断裂变形和变形能却逐渐减小.横向拉伸载荷对尼龙帘线-橡胶复合材料的纵向拉伸力学性能影响却很小.这可能与材料纵向和横线拉伸性能差异太大有关.","authors":[{"authorName":"张丰发","id":"ad3216e7-5fc2-4df2-8a1a-a0854449a969","originalAuthorName":"张丰发"},{"authorName":"万志敏","id":"52ee4adb-2a9b-4ac1-8c31-aef51883a9fb","originalAuthorName":"万志敏"},{"authorName":"杜星文","id":"ca08e9f7-9a6c-4b91-a069-968d912651b7","originalAuthorName":"杜星文"}],"doi":"10.3321/j.issn:1000-3851.2003.04.023","fpage":"117","id":"337451e4-110e-40f4-92cc-992567c81b20","issue":"4","journal":{"abbrevTitle":"FHCLXB","coverImgSrc":"journal/img/cover/FHCLXB.jpg","id":"26","issnPpub":"1000-3851","publisherId":"FHCLXB","title":"复合材料学报"},"keywords":[{"id":"c2d634a6-2c5e-4a06-bab0-783b2b4e0ef0","keyword":"尼龙帘线-橡胶复合材料","originalKeyword":"尼龙帘线-橡胶复合材料"},{"id":"f83162e7-5094-4fba-a25c-cccdc9189aa6","keyword":"十字形试件","originalKeyword":"十字形试件"},{"id":"b9875c09-3870-41a5-acc6-f9ad1de20eab","keyword":"双轴拉伸","originalKeyword":"双轴拉伸"}],"language":"zh","publisherId":"fhclxb200304023","title":"纵向拉伸对尼龙帘线-橡胶复合材料横向拉伸力学性能影响的实验研究","volume":"20","year":"2003"},{"abstractinfo":"用碳化硅颗粒增强泡沫铝为夹芯,不锈钢圆管为面板制备层合圆管,研究了层合圆管在准静态压缩条件下的纵向和横向变形行为和能量吸收性能.研究表明,层合圆管的纵向压缩变形方式与空管相比发生了改变,由不对称变形模式变为轴对称变形模式;载荷-位移曲线平台段锯齿形波动与曲屈圈的形成呈现对应关系;层合圆管纵向和横向的吸能能力均远大于不锈钢圆管和泡沫铝吸收的能量之和,并且随着应变的增加,层合圆管的吸能能力增加更为快速;层合圆管在保持泡沫铝轻质的同时,在纵向和横向两个方向上均大幅度提高泡沫铝的吸能能力.","authors":[{"authorName":"王松林","id":"9d837e69-89ee-4374-aa0e-d060567b025e","originalAuthorName":"王松林"},{"authorName":"凤仪","id":"defded92-9215-4c56-9054-91947fb4fd15","originalAuthorName":"凤仪"},{"authorName":"徐屹","id":"16247702-f21e-4728-bb83-6edffb448f33","originalAuthorName":"徐屹"},{"authorName":"张学斌","id":"2195f55c-2a66-4c70-beee-3eb966c7356d","originalAuthorName":"张学斌"},{"authorName":"沈剑","id":"232972b0-eebc-428a-95e8-49ba2ff7a0be","originalAuthorName":"沈剑"}],"doi":"10.3969/j.issn.1009-6264.2007.01.003","fpage":"9","id":"2c71f598-830f-4c45-9ff3-c8222c9f10dd","issue":"1","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"fffcea89-3740-41e2-829f-3479bdedbc31","keyword":"泡沫铝","originalKeyword":"泡沫铝"},{"id":"efbe7b67-4e09-4ba4-8a14-bdf2cdf96cd2","keyword":"层合圆管","originalKeyword":"层合圆管"},{"id":"0af88468-8e49-494c-aa5e-0219feecfea3","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"0878cb46-ee90-489c-b344-0608410911b2","keyword":"吸能性能","originalKeyword":"吸能性能"}],"language":"zh","publisherId":"jsrclxb200701003","title":"泡沫铝层合圆管纵向和横向压缩力学性能研究","volume":"28","year":"2007"},{"abstractinfo":"
采用常温冲击实验和拉伸实验研究了大断面7050铝合金型材横向3个典型位置的力学性能的差异, 并通过OM, EBSD和TEM分析了其显微组织. 结果表明: 晶粒尺寸约为12 μm的型材芯部比晶粒尺寸约为6 μm的边部的屈服强度高, 其原因是芯部较硬Copper取向的形变织构组分更强. 根据固溶合金元素含量所得的固溶强化项、亚晶粒尺寸所得的晶界强化项和合金的屈服强度可计算Taylor因子, 芯部为3.925, 边部为2.257. 晶界强化模型中Hall-Petch模型比Nes模型更适用于计算固溶后的晶界强化对合金屈服强度的贡献. 此外, 还建立了3种试样过时效态冲击功与亚晶粒尺寸之间的线性关系.
","authors":[{"authorName":"顾伟","id":"4b00681b-4ced-4cd4-b9ee-ce078b741453","originalAuthorName":"顾伟"},{"authorName":"李静媛","id":"2e95b9d6-e43d-46be-aa2c-01c2b71270d6","originalAuthorName":"李静媛"},{"authorName":"王一德","id":"957951e1-a8e4-436a-9e40-d96bcd182dd8","originalAuthorName":"王一德"}],"categoryName":"","doi":"10.11900/0412.1961.2015.00163","fpage":"51","id":"6e084ac8-3012-4497-b4d3-155345433f78","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"a9323ff0-b9d7-4d3b-932a-7c11b0ae4c3d","keyword":"7050铝合金","originalKeyword":"7050铝合金"},{"id":"23436b07-c653-4598-b960-689fab6b3019","keyword":"晶界强化","originalKeyword":"晶界强化"},{"id":"56024b5b-66fb-4a05-83c0-31b861968e06","keyword":"Taylor 因子","originalKeyword":"Taylor 因子"},{"id":"126643d4-ce62-4bea-9d34-46dde64d4833","keyword":"冲击功","originalKeyword":"冲击功"},{"id":"1323e829-68ec-4e21-b77c-e0473d698667","keyword":"屈服强度","originalKeyword":"屈服强度"}],"language":"zh","publisherId":"C20150163","title":"晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响*","volume":"52","year":"2016"},{"abstractinfo":"采用常温冲击实验和拉伸实验研究了大断面7050铝合金型材横向3个典型位置的力学性能的差异,并通过OM,EBSD和TEM分析了其显微组织.结果表明:晶粒尺寸约为12 μm的型材芯部比晶粒尺寸约为6μm的边部的屈服强度高,其原因是芯部较硬Copper取向的形变织构组分更强.根据固溶合金元素含量所得的固溶强化项、亚晶粒尺寸所得的晶界强化项和合金的屈服强度可计算Taylor因子,芯部为3.925,边部为2.257.晶界强化模型中Hall-Petch模型比Nes模型更适用于计算固溶后的晶界强化对合金屈服强度的贡献此外,还建立了3种试样过时效态冲击功与亚晶粒尺寸之间的线性关系.","authors":[{"authorName":"顾伟","id":"f92f6a51-aeae-4c99-bf46-d21ba4ae21c5","originalAuthorName":"顾伟"},{"authorName":"李静媛","id":"f4b52d25-5ece-4640-a4ad-b5cf5ebf6d01","originalAuthorName":"李静媛"},{"authorName":"王一德","id":"03d47863-edd5-49cf-8c3d-0c85dfaf96ab","originalAuthorName":"王一德"}],"doi":"10.11900/0412.1961.2015.00163","fpage":"51","id":"d0ab4585-c624-4477-b838-fdc6c8f776c0","issue":"1","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"730edc93-8c78-4fb7-8c9c-a28095920b0b","keyword":"7050铝合金","originalKeyword":"7050铝合金"},{"id":"b710ce3e-88f1-42c6-87a6-9514a95b52f4","keyword":"晶界强化","originalKeyword":"晶界强化"},{"id":"dae23926-5b05-4429-9cc2-975f16274037","keyword":"Taylor因子","originalKeyword":"Taylor因子"},{"id":"aa029c30-acf6-49fa-9184-6b796d4de0b1","keyword":"冲击功","originalKeyword":"冲击功"},{"id":"135e7543-fd54-49b6-b8c1-758ac29ef1e2","keyword":"屈服强度","originalKeyword":"屈服强度"}],"language":"zh","publisherId":"jsxb201601007","title":"晶粒尺寸及Taylor因子对过时效态7050铝合金挤压型材横向力学性能的影响","volume":"52","year":"2016"},{"abstractinfo":"制备了海泡石增强橡胶密封复合材料(SRRC),对其横向压缩力学性能进行了测试.采用扫描电子显微镜观察了试样断面上的海泡石纤维分布状况,建立了单分散和多分散纤维体系的代表性体积单元(RVE)模型.通过Abaqus有限元软件建立了SRRC的计算模型,采用连续的网格重划技术,预测了SRRC的大变形行为.结果表明,当纤维体积分数较小时,压缩应力随应变呈线性增加;当纤维体积分数达到42%时,随着应变的增加,应力-应变曲线呈明显的非线性;增加海泡石纤维的体积分数,能够有效提高SRRC的弹性模量和压缩强度.通过对RVE模型进行2次网格重划,可使模型的压缩应变达到0.4.相比于单分体系,多分散体系RVE模型的预测结果与实验值更为接近.","authors":[{"authorName":"张斌","id":"d7c70834-fb42-44fb-8be6-b0c489fc2fe3","originalAuthorName":"张斌"},{"authorName":"宇晓明","id":"0d6d255f-d34a-4868-8172-79a5ea161ce0","originalAuthorName":"宇晓明"},{"authorName":"顾伯勤","id":"531be8d8-354e-4b87-9cad-cc2c51dbf58c","originalAuthorName":"顾伯勤"}],"doi":"10.16865/j.cnki.1000-7555.2016.10.014","fpage":"79","id":"ba357f21-dd20-4b0a-8e7e-9022b2c5eff2","issue":"10","journal":{"abbrevTitle":"GFZCLKXYGC","coverImgSrc":"journal/img/cover/GFZCLKXYGC.jpg","id":"31","issnPpub":"1000-7555","publisherId":"GFZCLKXYGC","title":"高分子材料科学与工程"},"keywords":[{"id":"2ef0893d-cab1-4df6-ad91-f27c2bab6af7","keyword":"复合材料","originalKeyword":"复合材料"},{"id":"37d6fc34-afe8-40bc-af15-e7e9a1b90e66","keyword":"橡胶","originalKeyword":"橡胶"},{"id":"0aa587ad-fcb9-4872-b54b-0bd41664f02a","keyword":"大变形","originalKeyword":"大变形"},{"id":"86deac12-45d6-44e3-9ed0-a9278029d137","keyword":"网格重划","originalKeyword":"网格重划"},{"id":"312d6cdd-c636-4e68-b5aa-556cefdbbf29","keyword":"横向压缩","originalKeyword":"横向压缩"}],"language":"zh","publisherId":"gfzclkxygc201610014","title":"海泡石增强橡胶密封复合材料横向压缩性能的细观力学模型","volume":"32","year":"2016"}],"totalpage":9710,"totalrecord":97092}