{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"简单介绍了汽车用氧传感器,总结Mg2+,Fe3+,Al3+,Li+,Ag+,Mn2+,Cu2+,Ni2+等离子掺杂对钛酸锶氧敏性能的影响.综合比较铁、镁掺杂钛酸锶效果较好.","authors":[{"authorName":"梁崇","id":"dde60cdb-b7a5-441a-8315-f77189a675b2","originalAuthorName":"梁崇"},{"authorName":"杨德安","id":"a186bbc4-fe9a-4a30-9e47-348447c668f1","originalAuthorName":"杨德安"},{"authorName":"赵巍","id":"78beb8e7-16fe-4357-a810-d8d6b1f6b805","originalAuthorName":"赵巍"},{"authorName":"徐廷献","id":"965c2149-d359-4532-917e-47ef33769627","originalAuthorName":"徐廷献"}],"doi":"10.3969/j.issn.1001-1625.2004.04.020","fpage":"76","id":"11c97f74-68a8-49a6-91e9-7d1e19f71e16","issue":"4","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"7f83e5a6-d8d3-4cbb-9463-fafa12ccfdba","keyword":"氧传感器","originalKeyword":"氧传感器"},{"id":"2346de25-9209-490e-a931-5c3e96c83a29","keyword":"钛酸锶","originalKeyword":"钛酸锶"},{"id":"e51a11e8-bca4-4439-b5d9-8ca250eae20d","keyword":"掺杂","originalKeyword":"受主掺杂"}],"language":"zh","publisherId":"gsytb200404020","title":"掺杂对钛酸锶氧敏传感器的影响","volume":"23","year":"2004"},{"abstractinfo":"采用Ba(OH)2·8H2O, Pb(CH3COO)2·3H2O和KOH为原料, 柠檬酸和乙二胺四乙酸(EDTA)为复合螯合剂, 采用溶胶凝胶工艺制备了K掺杂BaPbO3(BPO)陶瓷, 讨论了不同的K掺杂浓度对BPO导电陶瓷的电导率和阻温特性的影响.实验结果表明: 采用Sol-Gel法获得了均一相、化学计量比的K掺杂BPO陶瓷;K-BPO陶瓷的室温电阻率随K掺杂量呈倒\"S\"形状变化, 当掺杂量为3%~5%(摩尔分数)时室温电阻率最低, 约为4.5×10-4 Ω·cm;另外, 与BaTiO3系PTC陶瓷不同, PBO陶瓷引入杂质K后, 不但可以降低材料的室温电阻率, 而且可以使材料呈现出一定的PTC效应.","authors":[{"authorName":"陆裕东","id":"bd40fcf3-45af-4edb-8baf-6123fcd02af8","originalAuthorName":"陆裕东"},{"authorName":"王歆","id":"8816f187-2e10-4908-881f-6e9bb9cf04c0","originalAuthorName":"王歆"},{"authorName":"庄志强","id":"1be7db65-1a45-4d31-a317-f1cdb1537add","originalAuthorName":"庄志强"}],"doi":"10.3969/j.issn.0258-7076.2005.05.010","fpage":"643","id":"38df85ad-8258-4de5-bf1c-a6231fca0cd0","issue":"5","journal":{"abbrevTitle":"XYJS","coverImgSrc":"journal/img/cover/XYJS.jpg","id":"67","issnPpub":"0258-7076","publisherId":"XYJS","title":"稀有金属"},"keywords":[{"id":"bdc82a5c-af97-4a81-926b-c4cae08bfc9b","keyword":"BaPbO3","originalKeyword":"BaPbO3"},{"id":"98ec2f89-8a1f-4c75-9a7e-7280cad03531","keyword":"导电陶瓷","originalKeyword":"导电陶瓷"},{"id":"e7e5f54d-d50e-42f6-9d3d-0b63fcc0b3c3","keyword":"掺杂","originalKeyword":"受主掺杂"},{"id":"5d7aa89c-f5f1-417d-ae7e-b8e6b637b094","keyword":"电导率","originalKeyword":"电导率"},{"id":"3d8e9417-075a-4f02-b29d-c6cc7e73c4c8","keyword":"阻温特性","originalKeyword":"阻温特性"},{"id":"90653b7d-4701-4e75-b313-87c5511e2ff0","keyword":"Sol-Gel","originalKeyword":"Sol-Gel"}],"language":"zh","publisherId":"xyjs200505010","title":"Ba1-xKxPbO3系导电陶瓷的电性能研究","volume":"29","year":"2005"},{"abstractinfo":"采用高温平衡电导法测定了高温平衡电导率随氧分压(10-12~105Pa)的变化曲线, 由此确定了未掺杂和Al掺杂BaPbO3陶瓷多晶体中的主导缺陷及其电荷补偿缺陷. 同时讨论了掺杂浓度对材料的高温平衡电导率、高氧分压和低氧分压下主导缺陷转变点的影响, 确定了掺杂BaPbO3缺陷行为随掺杂量的变化机理. 在高氧分压下, 材料表现出本征缺陷行为, Pb离子空位占主导, 电荷补偿缺陷为空穴; 随着氧分压的下降, 材料由本征缺陷控制区域进入非本征缺陷控制区域, 杂质取代Pb离子空位占主导; 在低氧分压区域, 随着氧离子空位浓度的上升, 氧离子空位取代空穴, 成为杂质的电荷补偿缺陷.","authors":[{"authorName":"陆裕东","id":"c181d3cc-6b70-499e-850f-13d759095c8f","originalAuthorName":"陆裕东"},{"authorName":"王歆","id":"fa748876-6c26-40a3-abd5-0ff1bb3dca50","originalAuthorName":"王歆"},{"authorName":"庄志强","id":"f088b82d-986d-4895-9098-5c32059f5fec","originalAuthorName":"庄志强"},{"authorName":"刘保岭","id":"7294e0e7-0de5-4f1b-bc57-0a9e01a7b912","originalAuthorName":"刘保岭"},{"authorName":"刘勇","id":"a204c4d4-ba2d-4731-8e6e-7fb3d0036d38","originalAuthorName":"刘勇"}],"categoryName":"|","doi":"10.3724/SP.J.1077.2007.00811","fpage":"811","id":"9c9b162e-a421-4f33-b1ba-63dd6489d56e","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"9770940d-0367-4d17-82ce-4eb2d80b901d","keyword":"BaPbO3","originalKeyword":"BaPbO3"},{"id":"0e19613e-53c6-4720-a5dd-b719c30fc674","keyword":" defect chemistry","originalKeyword":" defect chemistry"},{"id":"14f23b39-933b-481d-aede-fab547a95959","keyword":" nonstoichiometry","originalKeyword":" nonstoichiometry"},{"id":"b432d2b8-47e4-4db8-ab9e-ef0be2dea62a","keyword":" acceptor","originalKeyword":" acceptor"}],"language":"zh","publisherId":"1000-324X_2007_5_10","title":"掺杂 BaPbO3中的非化学计量比","volume":"22","year":"2007"},{"abstractinfo":"采用高温平衡电导法测定了高温平衡电导率随氧分压(10-12~105Pa)的变化曲线,由此确定了未掺杂和Al掺杂BaPbO3陶瓷多晶体中的主导缺陷及其电荷补偿缺陷.同时讨论了掺杂浓度对材料的高温平衡电导率、高氧分压和低氧分压下主导缺陷转变点的影响,确定了掺杂BaPbO3缺陷行为随掺杂量的变化机理.在高氧分压下,材料表现出本征缺陷行为,Pb离子空位占主导,电荷补偿缺陷为空穴;随着氧分压的下降,材料由本征缺陷控制区域进入非本征缺陷控制区域,杂质取代Pb离子空位占主导;在低氧分压区域,随着氧离子空位浓度的上升,氧离子空位取代空穴,成为杂质的电荷补偿缺陷.","authors":[{"authorName":"陆裕东","id":"4d0aca7a-1a86-429f-9396-07555f24e94f","originalAuthorName":"陆裕东"},{"authorName":"王歆","id":"08ca073d-e8b9-4924-8e5b-ac67fe53947d","originalAuthorName":"王歆"},{"authorName":"庄志强","id":"6b3f39fd-1231-4d34-84c4-39a11aa0593e","originalAuthorName":"庄志强"},{"authorName":"刘保岭","id":"5af79d24-3e6d-4545-a83c-f4944f1d98a1","originalAuthorName":"刘保岭"},{"authorName":"刘勇","id":"ed705dfb-037d-4f64-8703-7fd0a2b7d464","originalAuthorName":"刘勇"}],"doi":"10.3321/j.issn:1000-324x.2007.05.008","fpage":"811","id":"4c75479f-be68-4cdd-8cda-73ef41aa8337","issue":"5","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"4e69e47f-98cf-4754-a0f5-da0a8d4134b9","keyword":"BaPbO3","originalKeyword":"BaPbO3"},{"id":"d591a53c-6ddb-4720-835e-c671bbb6d5dd","keyword":"缺陷化学","originalKeyword":"缺陷化学"},{"id":"1d9d9c81-7eb5-4576-bf2d-5f83e1cd5154","keyword":"非化学计量比","originalKeyword":"非化学计量比"},{"id":"aa76babb-9403-46ab-8bfd-6ef26a95bda7","keyword":"","originalKeyword":"受主"}],"language":"zh","publisherId":"wjclxb200705008","title":"掺杂BaPbO3中的非化学计量比","volume":"22","year":"2007"},{"abstractinfo":"采用基于密度泛函理论的第一原理平面波超软赝势法,对六方纤锌矿结构ZnO晶体,Na、N分别掺杂ZnO晶体,Na、N共掺杂ZnO晶体的几何结构进行了优化,其中Na、N共掺杂又分为Na、N相连和分开两种情况,以此为基础计算得到了这几种情况下ZnO晶体的能带结构,总态密度和分波态密度。结果表明,Na、N共掺得到的p型ZnO比单掺要好;两种共掺情况中Na、N分开会比Na、N相连p掺杂效果更好。","authors":[{"authorName":"解晓宇","id":"0154b0ad-d8ff-45b4-8a42-3327e3c7bdaa","originalAuthorName":"解晓宇"},{"authorName":"孙慧卿","id":"78dcc869-93fe-4bcc-b9b9-eb7b4e8bcffe","originalAuthorName":"孙慧卿"},{"authorName":"王度阳","id":"8d1486e0-8344-4d6d-a963-291f37b1f313","originalAuthorName":"王度阳"},{"authorName":"许轶","id":"53d9f29e-78d4-40f0-a7c5-1250a178f37b","originalAuthorName":"许轶"},{"authorName":"韩世洋","id":"2a550c89-a46c-4e2d-b8c4-758116047eef","originalAuthorName":"韩世洋"},{"authorName":"肖永能","id":"3335773f-c2af-40ce-9250-f6c627db1b09","originalAuthorName":"肖永能"}],"doi":"","fpage":"257","id":"a16cbdf7-a3bc-4473-87cd-aacdc9e82b5d","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"b2c5bcb7-303d-442a-8afb-8d710cdd6e07","keyword":"光电子学","originalKeyword":"光电子学"},{"id":"486ad54f-af06-4250-ae12-65344d448b8c","keyword":"ZnO电子结构","originalKeyword":"ZnO电子结构"},{"id":"1cb3eb84-2ea2-4de3-a42f-4044782d02ca","keyword":"第一原理","originalKeyword":"第一原理"},{"id":"ac7b67a4-bd9c-4bfc-84af-9eed90e3307b","keyword":"p型ZnO","originalKeyword":"p型ZnO"},{"id":"f0061965-d9d8-44d5-aa89-1d71ec3b0cc8","keyword":"Na、N共掺杂","originalKeyword":"Na、N共掺杂"}],"language":"zh","publisherId":"gncl201202031","title":"Na,N双掺杂p型ZnO第一原理研究","volume":"43","year":"2012"},{"abstractinfo":"采用TE103单模腔微波炉烧结BaTiO3陶瓷,对微波与陶瓷材料相互作用机制进行了探讨,分析了DaTiO3陶瓷微波烧结过程中各损耗随温度的变化规律;同时,分别在体系中引入杂质Cr3+和施主杂质Nb5+,研究微波场中杂质浓度对钛酸钡陶瓷晶粒生长的影响.","authors":[{"authorName":"张道礼","id":"27d07d9f-310f-4544-b944-e7ef3761d132","originalAuthorName":"张道礼"},{"authorName":"曹明贺","id":"3266d2c6-c8c9-4d05-a598-38f81ffdc876","originalAuthorName":"曹明贺"},{"authorName":"周东祥","id":"37f5a2dc-3fd6-4aa4-be48-4b23f7115447","originalAuthorName":"周东祥"},{"authorName":"欧阳世翕","id":"a12e9569-0a30-4e4d-ad14-9ce2ee17971b","originalAuthorName":"欧阳世翕"}],"doi":"","fpage":"528","id":"e6887a90-2d3d-440b-90e3-0e76827cfad2","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"26610614-d997-460d-b506-8467161e7eea","keyword":"微波场","originalKeyword":"微波场"},{"id":"84bc517b-238a-4f70-81f0-5d3568188e73","keyword":"BaTiO3陶瓷","originalKeyword":"BaTiO3陶瓷"},{"id":"8280d0e7-159b-45c8-8cf9-0e75fa4e71c8","keyword":"微波烧结","originalKeyword":"微波烧结"},{"id":"27e0b077-9749-4dc4-bc9a-140111faa812","keyword":"晶粒生长","originalKeyword":"晶粒生长"}],"language":"zh","publisherId":"gncl200005030","title":"微波场中BaTiO3陶瓷的烧结及施、掺杂对晶粒生长的影响","volume":"31","year":"2000"},{"abstractinfo":"施主掺杂的荧光4H-SiC可以通过复合发出可见光,影响其发光性能的一个重要因素是施主-掺杂的浓度.本研究通过PVT生长方法制备了3英寸N-B-Al共掺的4H-SiC晶体,采用Raman光谱、SIMS对晶体的结晶类型和掺杂浓度进行了表征;采用PL发射谱和激发谱、荧光衰减曲线表征和内量子效率对晶体的发光波长、强度、施主-对复合发光性能进行了研究.结果发现,低浓度Al掺杂样品在室温下发出黄绿色荧光.低浓度Al掺杂在晶体中提供较少的;高浓度B、N掺杂形成施主,从而贡献充足的电子-空穴对.这些电子-空穴的复合提高了施主-对复合的内量子效率,进而增强光致发光强度,增加平均发光寿命.","authors":[{"authorName":"卓世异","id":"659da80f-f8e4-4b8f-bfa3-f61a151b521f","originalAuthorName":"卓世异"},{"authorName":"刘熙","id":"34ece6ae-73d9-40bc-837b-22f6402acaf5","originalAuthorName":"刘熙"},{"authorName":"高攀","id":"04b0dac6-671c-41f3-80d3-736192bef98f","originalAuthorName":"高攀"},{"authorName":"严成锋","id":"f39c908c-6bcd-44be-96bc-443bd08a4598","originalAuthorName":"严成锋"},{"authorName":"施尔畏","id":"a4f2e657-187d-4844-af93-3e217e84375c","originalAuthorName":"施尔畏"}],"doi":"10.15541/jim20160268","fpage":"51","id":"aacdb71a-837f-42bf-8804-4e5c51748416","issue":"1","journal":{"abbrevTitle":"WJCLXB","coverImgSrc":"journal/img/cover/WJCLXB.jpg","id":"62","issnPpub":"1000-324X","publisherId":"WJCLXB","title":"无机材料学报"},"keywords":[{"id":"0adfa752-0916-4d4f-b4a0-4faa509ec19b","keyword":"碳化硅","originalKeyword":"碳化硅"},{"id":"de32f37f-7875-4684-b633-a73b6b9fc0eb","keyword":"光致发光","originalKeyword":"光致发光"},{"id":"11b740a9-548d-4af0-a260-855c4d5a1bbb","keyword":"内量子效率","originalKeyword":"内量子效率"}],"language":"zh","publisherId":"wjclxb201701008","title":"N-B-Al共掺荧光4H-SiC施主对发光性能研究","volume":"32","year":"2017"},{"abstractinfo":"在有效质量近似基础上,考虑强的内建电场效应,变分计算了纤锌矿结构的GaN柱形量子点中带电量为-e的离子束缚激子(A-,X)的发光波长.结果表明,离子束缚激子发光波长强烈依赖于量子点的尺寸(高度和半径)、离子杂质的位置和垒中A1含量.随着量子点高度、半径及垒中A1含量的增加,离子束缚激子发光波长增大.随着离子杂质从量子点左边垒中沿z轴方向移至量子点左边界,发光波长先增大,在量子点的左界面附近达到极大值;随着离子杂质在量子点内继续右移,发光波长减小,当杂质位于量子点的右边界附近时光跃迁波长达到极小值;进一步右移离子杂质至量子点的右边垒中时,发光波长增大.和自由激子光跃迁波长相比,当离子杂质位于量子点中心的左边时,杂质的引入使发光波长增大,当离子杂质位于量子点中心的右边时,杂质的引入使发光波长减小.","authors":[{"authorName":"郑冬梅","id":"295f01c0-b666-424b-978e-497d6cc285df","originalAuthorName":"郑冬梅"},{"authorName":"王宗篪","id":"0d39dd22-a2e6-4c67-a69f-7c7e5f2d6735","originalAuthorName":"王宗篪"}],"doi":"10.3969/j.issn.1007-5461.2012.04.001","fpage":"385","id":"213751d8-eff5-4a74-94b7-a8d1ada4fd7e","issue":"4","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"6951c259-c04f-4610-8fe8-2f7435112d36","keyword":"光电子学","originalKeyword":"光电子学"},{"id":"96b98c18-e730-4cba-bf2d-5438fea50c7a","keyword":"柱形量子点","originalKeyword":"柱形量子点"},{"id":"b7450a3e-f63a-480e-b4e7-f35e4882008d","keyword":"内建电场","originalKeyword":"内建电场"},{"id":"f49d2ab5-dd05-4aec-8b23-fa7a6dce82fb","keyword":"离子束缚激子","originalKeyword":"离子受主束缚激子"},{"id":"06b53de2-e71a-4190-b4e8-2f000e1e7aa1","keyword":"发光波长","originalKeyword":"发光波长"}],"language":"zh","publisherId":"lzdzxb201204001","title":"纤锌矿应变GaN柱形量子点中离子束缚激子的带间光跃迁","volume":"29","year":"2012"},{"abstractinfo":"利用模板法和溶胶-凝胶法分别制备了 SnO2和 LaFeO3纯材料,并检测了纳米复合材料 SnO2/LaFeO3对CO 的气敏性能。在实验过程中,观察到纳米复合材料85%SnO2+15%LaFeO3(85Sn-La)及90%SnO2+10%LaFeO3(90Sn-La)在检测CO 时出现了一个反常现象,通常CO 表现为还原性气体的性质,然而在T≤200℃的温度范围内,与CO 的作用增加了复合氧化物85Sn-La及90Sn-La的电阻,而这一现象只在与氧化性气体反应时观察过。这种在特定环境下,n型材料与还原性气体(施主)作用时,其导电特征表现为与氧化性气体()作用时相同的现象称为类现象。类现象只在低温阶段被观察到,且复合氧化物85 Sn-La表现最为明显。利用温度、气氛与材料表面的交互作用来解释所观察到的实验现象:在低温情况下,CO 与材料表面的吸附氧及羟基发生反应,增加了表面的电荷,降低了材料表面的导电性,因而表现为类现象。","authors":[{"authorName":"张婉","id":"2947e965-9e7a-453d-96da-b19b2f6a85b8","originalAuthorName":"张婉"},{"authorName":"张顺平","id":"991b5be3-d0f2-457e-86f3-cb75ee657fe8","originalAuthorName":"张顺平"},{"authorName":"谢长生","id":"f572fdb5-b13e-4378-bfbb-661d254ea0bc","originalAuthorName":"谢长生"}],"doi":"10.3969/j.issn.1001-9731.2017.01.033","fpage":"1183","id":"4bf5ac0e-0fb5-4088-ab6c-23544268e34a","issue":"1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"a30028f8-7a39-4d40-9989-a4ffc87ac616","keyword":"SnO2/LaFeO3 纳米复合材料","originalKeyword":"SnO2/LaFeO3 纳米复合材料"},{"id":"d181a24b-c34f-43e1-b657-ab11de7de850","keyword":"CO","originalKeyword":"CO"},{"id":"6889cdec-d6ac-4e6a-9217-d069044ed098","keyword":"类现象","originalKeyword":"类受主现象"},{"id":"cd5c0e23-c037-4430-8a8d-2e3635b62330","keyword":"低温","originalKeyword":"低温"},{"id":"82de97d6-2f8d-408f-ab0f-12da739e9f36","keyword":"羟基","originalKeyword":"羟基"}],"language":"zh","publisherId":"gncl201701033","title":"SnO2/LaFeO3纳米复合材料检测CO时的类现象?","volume":"48","year":"2017"},{"abstractinfo":"通过在TiO2压敏陶瓷制备过程中引入Y系作为掺杂,讨论了以Y取代Bi掺杂对双功能TiO2压敏陶瓷性能的影响.实验结果表明:以Y系掺杂的Ti-Nb基压敏陶瓷可获得较好的低的压敏电压与高的电容双功能特性.其中,以Y+Cu为掺杂剂,SiO2为烧结助剂的配方,在1300℃温度下烧结,获得压敏电压V1mA=9.4V/mm,非线性系数α=4.8,介电常数ε=21300,介电损耗tanδ=0.09较优异的压敏介电性能.同时Y系掺杂也避免了掺杂Bi的高温挥发性.","authors":[{"authorName":"季惠明","id":"06f82aa3-2b39-45cc-9e22-89043b3c47bf","originalAuthorName":"季惠明"},{"authorName":"孙清池","id":"9f0c441b-6102-4d50-aa4d-92f896283514","originalAuthorName":"孙清池"},{"authorName":"王丹阳","id":"0e119117-2aaa-4e35-925b-bb509d69a700","originalAuthorName":"王丹阳"}],"doi":"10.3969/j.issn.1001-1625.2002.05.014","fpage":"58","id":"01a9816c-b2ae-4f1d-bcfe-34b155f3c64d","issue":"5","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"5560314b-8ec8-474a-b905-7107bc4c6759","keyword":"TiO2压敏陶瓷","originalKeyword":"TiO2压敏陶瓷"},{"id":"118657ff-856d-43bf-a8fb-1a5c14681e13","keyword":"Y系掺杂","originalKeyword":"Y系掺杂"},{"id":"cf5216c3-ae72-44e3-805e-fe7c880ba55d","keyword":"Bi系掺杂","originalKeyword":"Bi系掺杂"}],"language":"zh","publisherId":"gsytb200205014","title":"Y系掺杂的TiO2压敏陶瓷性能研究","volume":"21","year":"2002"}],"totalpage":1393,"totalrecord":13925}