欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(6870)
  • 图书()
  • 专利()
  • 新闻()

AZ31镁合金表面改性交叉轧制组织性能演变

楚志兵 , 杨彦龙 , 黄庆学 , 林乃明 , 唐宾 , , 杨小容

材料热处理学报

采用固体粉末包埋渗铝法对AZ31镁合金薄板表面进行改性处理,增置富铝系改性层,选用常规的四辊轧机对表面改性后的AZ31镁合金薄板进行室温交叉轧制处理.利用XRD、SEM、光学显微镜和CorrTest腐蚀电化学测试系统等分析测试手段研究基体、轧制前和轧制后的渗铝试样表面的组织、性能演变情况.结果表明:轧制处理后富铝系改性层组织晶粒明显细小、均匀;轧制变形后富铝系改性层的耐磨性能略有提高,其表面显微硬度为63.5 HB,表面摩擦系数平均值约为0.6,表面摩擦磨损质量损失为0.26 mg;轧制变形后的富铝系改性层的耐腐蚀性能有较大的提高,其开路电位增加为-1.574 V,自腐蚀电位为-1.38 V,而自腐蚀电流密度提高一个数量级,为7.0×10-4 mA/cm2.

关键词: AZ31镁合金 , 富铝系改性层 , 交叉轧制 , 自腐蚀电流 , 腐蚀电位

宽幅AZ31B铸轧镁合金温轧工艺条件的组织性能

刘鹏涛 , , 贾伟涛 , 徐海洁 , 蒋亚平

材料热处理学报

在温度范围为300~450℃,压下率为20%~40%,轧制速度为0.1~0.8 m/s工艺条件下对宽幅AZ31B铸轧镁合金进行了多组温轧试验,而后对轧后的镁板分别进行室温拉伸,并用光学显微镜观察各条件轧制后的组织形态,用SEM观察拉伸试样断口形貌,同时进行往复摩擦实验.研究表明:轧制温度为350℃,轧制速度为0.1 m/s,压下率为30%时可以获得很好的断裂强度,在此温轧条件下镁合金板材的耐磨损系数增加了80%;温度为450℃,轧制速度为0.8 m/s,压下率为40%时可以获得很好的塑性变形能力;压下率超过30%之后,晶界处容易产生位错塞积,导致累积变形量增加及内应力激增,是镁合金边部产生微裂纹进而形成断裂失效的主要原因.

关键词: 宽幅AZ31B铸轧镁合金 , 温轧 , 抗拉强度 , 塑性变形能力 , 工艺条件

制坯工艺对热轧不锈钢/碳钢复合板复合效果的影响

黄庆学 , 杨小容 , 周存龙 , 刘光明 , , 李海滨

材料热处理学报

采用真空电子束焊接、界面四周焊合抽真空和界面四周焊合3种工艺制备不锈钢/碳钢复合板坯并热轧,研究了不同制坯工艺下复合板复合界面的组织结构及其性能.结果表明,利用真空电子束焊接和界面四周焊合抽真空两种方式制备的复合板坯经热轧后能100%复合,而通过界面四周焊合方式制备的复合板坯在热轧后界面结合率较低.对3种工艺下成功复合的部位,其复合界面形貌相似,即界面都较平直,且都存在不锈钢、碳钢和复合层3个区域以及近复合层碳钢内的脱碳区,靠近不锈钢侧也都间断分布着Si-Mn等的氧化物.真空电子束焊接和界面四周焊合抽真空两种方式制备的坯料在热轧后碳钢与不锈钢之间都实现了较高强度的复合,并且真空电子束焊接坯料热轧复合板的强度值都略高于界面四周焊合抽真空复合板的.

关键词: 复合板坯 , 真空电子束焊 , 界面四周焊合 , 抽真空 , 组织 , 强度

AZ31B镁合金热轧后组织性能预测模型的建立

, 徐海洁 , 贾伟涛 , 刘鹏涛

材料热处理学报

在压下量为10% ~40%、轧制速度为0.1~0.8 m/s、初轧温度为250 ~400℃条件下对AZ31B镁合金进行轧制实验,对轧后镁板的微观组织和力学性能进行综合研究.引入Zener-Hollomon参数,综合考虑初轧温度T、变形速率.ε,建立平均晶粒尺寸预测模型;对轧后镁板抗拉强度与平均晶粒尺寸关系进行非线性拟合解析,建立抗拉强度数学模型,基于上述模型建立AZ31B镁合金热轧后组织性能预测模型.结果表明,轧后镁板微观平均晶粒尺寸与宏观抗拉性能存在较强相关性,解析精确度取决于轧前工艺参数的制定,精确求解变形速率.ε可有效提高晶粒尺寸及抗拉强度的预测精度;AZ31B镁合金热轧后组织性能预测模型既能指导热轧前设计最优的轧制制度,又能根据轧前工艺参数在线检测进行热轧后镁板组织及性能的综合评估.

关键词: AZ31B镁合金 , 组织性能 , 热轧轧制制度 , 预测模型

β-Mg17Al12相对AZ31B镁合金铸轧板边裂行为的影响

黄志权 , 黄庆学 , , 林金保 , 庞志宁

稀有金属材料与工程

采用光学显微镜、场发射扫描电镜及室温拉伸试验等研究了β-Mg17Al12相对AZ31B镁合金铸轧板边裂行为的影响.结果表明:β-Mg17Al12相在AZ31B镁合金铸轧板的表层及边部主要分布于晶界处且密度较大、构成网状,而在板坯的中心及中部呈球状弥散在α-Mg基体中,构成层片状;网状β-Mg17Al12相对AZ31B镁合金铸轧板塑性有恶化作用,而层片状β-Mg17Al12相有利于合金塑性;位于晶界处的β-Mg17Al12相与基体α-Mg结合力较差且表现为脆性,铸轧变形时首先与基体分离,造成裂纹在晶界处萌生和扩展;轧制压力和摩擦力使轧制区域拉伸应变积聚,由此传递到液态区两侧的凝固硬壳内(即板坯边部),使晶粒破碎或沿晶界β-Mg17Al12相撕裂并向纵深扩展,形成边裂.

关键词: AZ31B镁合金 , 铸轧 , β-Mg17Al12相 , 边裂 , 力学性能

AZ31B宽幅镁合金铸轧板材热轧边裂原因分析

, 庞志宁 , 自勇 , 徐海洁 , 蒋亚平

材料科学与工程学报

宽度150mm的AZ31B镁合金铸轧板材在轧制温度为350℃,轧制速度为0.5m/s,压下率分别为10%,20%,30%的不同工艺条件下进行了数值模拟和热轧实验研究.结果表明:同一温度条件下,随着轧制压下量的增大,镁板内部金属流动具有各向异性,其内部层片状结构的结合力随应变量的增大而减弱;在显微组织中,所产生的机械孪晶会随着轧制压下而压弯,甚至产生较小的次生孪晶,大小不一的孪晶组织会产生局部应力集中,从而产生微裂纹失稳扩展,边部的损伤因子随之增大.因此,减少长条形孪晶和第二相β-(Mg17Al12)的产生是控制边部裂纹的关键因素之一.

关键词: AZ31B镁合金 , 边裂 , 微观组织 , 条元法 , β-(Mg17Al12)

宽幅AZ31B镁合金铸轧板显微组织和性能研究

黄志权 , 黄庆学 , , 林金保 , 庞志宁

材料研究学报

通过金相观测、断口扫描和力学性能测试等实验,研究了宽幅AZ31B镁合金铸轧板的组织分布,及其对板带边裂和力学性能的影响.结果表明:AZ31B镁合金铸轧板的组织主要由a-Mg基体、析出相β-Mg17Al12相及α+β离异共晶组成,呈树枝晶形貌;β-Mg17Al12相在AZ31B镁合金铸轧板坯的表层及边部主要分布于晶界处且密度较大、构成网状,而在板坯的心部和中部呈球状弥散于α-Mg基体中,构成层片状;在板坯边部枝晶间低熔点的共晶相及晶界上的β-Mg17Al12相易成为裂纹源,并沿晶向外扩展,是铸轧过程中产生裂纹的主要原因;试样拉伸断口呈脆性解理断裂的特征,其力学性能呈明显的各向异性.

关键词: 金属材料 , 微观组织 , 力学性能 , 边裂 , AZ31B镁合金 , 铸轧宽板

表面渗铝改性镁合金的轧制组织性能

楚志兵 , 吕阳阳 , 唐宾 , 黄庆学 ,

复合材料学报 doi:10.13801/j.cnki.fhc1xb.20141224.001

引入"固态扩渗+轧制"一种新的表面改性方式,在研究镁合金薄板表面改性方法及工艺的基础上,采用固态扩渗的方法对AZ31镁合金薄板进行表面渗铝改性处理获得Al/AZ31镁基复合材料;借助有限元软件LS-DYNA模拟其冷轧过程,获得最优轧制工艺条件并进行轧制试验,通过XRD、SEM、金相显微镜、布氏硬度测量计、往复式摩擦磨损试验机和CorrTest腐蚀电化学测试系统检测材料表面的组织性能.结果表明:Al/AZ31镁基复合材料轧制变形后表面形变强化使表面组织晶粒更加细小、均匀,同时产生新的物相MgAl2O4,使其耐磨耐腐蚀性得到改善,表面布氏硬度从HB61.4提高到HB63.5,摩擦因数由0.52提高为0.60,表面摩擦磨损质量损失从0.33 mg减小到0.26 mg;表面耐腐蚀性能显著提高,自腐蚀电位从-1.49 V提高为-1.38 V,自腐蚀电流密度从6.2×10-3 mA/cm2降为7.0×10-4 mA/cm2.采用"固态扩渗+轧制"的方法获得的Al/AZ31镁基复合材料的耐磨性有所改善,耐腐蚀性能显著提高.

关键词: 轧制 , 固态扩渗 , 复合材料 , 镁合金 , 表面性能

包铝镁合金复合板轧制制备新工艺

刘鹏涛 , , 贾伟涛 , 庞志宁

材料科学与工程学报 doi:10.14136/j.cnki.issn 1673-2812.2016.03.033

本研究采用浇铸预复合+热轧新工艺成功地制备了包铝镁合金复合板.借助金相显微镜和显微硬度测试仪分析了浇铸预复合+热轧新工艺对包铝镁合金复合板的微观组织形貌特征和显微硬度的变化情况.研究表明:由于浇铸预复合的铝液温度较高,使得Mg/Al复合界面上形成较多数量的“熔池”,有效地提高了轧前Mg/Al金属预复合的结合强度;热轧制复合工艺下的大压下量有效地细化了Mg/Al结合层的组织,增强了复合界面的结合强度.

关键词: 铸造复合 , 热轧 , 镁铝复合板 , 结合层

铸态AZ31B镁合金变温轧制过程及流变应力

贾伟涛 , , 自勇 , 蒋亚平 , 徐海洁 , 刘鹏涛

稀有金属

在变形温度250-450℃、应变速率0.005~5 s-1下对铸态AZ31B镁合金圆柱试样进行了Gleeble高温压缩实验.对不同初轧温度、不同轧制压下量下镁合金的热轧制过程进行了实验、数值模拟及损伤分析.采用动态材料模型中的计算方法计算了热加工图,用Zener-Hollomon参数法建立了单向压缩时的流变应力模型,最后综合传热学基本原理及轧制理论,建立了变温轧制过程中的流变应力模型.研究结果表明:合理分解温度范围求解单向压缩流变应力模型,有效提高了模型的预测精度;轧制前滑区和后滑区的主传热机制有所区别,考虑到轧辊对轧件的作用力主要分布在后滑区,则此区域为边裂重点研究区域;数值模拟过程中轧件边部区域的Normalized Cockcraft and Latham损伤值最大,并且随着变形温度的降低以及道次压下量的增大而增大.此现象与轧制实验结果相符,不同轧制条件下轧制流变应力模型的求解结果与数值模拟结果较吻合.

关键词: 数值模拟 , 损伤分析 , 热加工图 , 流变应力 , 轧制理论

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共687页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词