{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"以氢氧化钠、六水合硝酸、硝酸为原料,采用化学共沉淀法制备氢氧化-氧化银复合;然后在封闭循环氢还原炉中还原氢氧化-氧化银复合,得到复合.结果表明:制备氢氧化-氧化银复合的最佳工艺为,温度25℃,搅拌速度1200r/min,搅拌时间60 min,反应终点的pH值13,滴加氢氧化钠溶液的速度为50 ml/min;氢氧化-氧化银复合的粒度为3~45 nm;在封闭循环氢还原炉中的还原条件为300℃,30 min,复合的粒度为2~20nm.","authors":[{"authorName":"李在元","id":"0e6d1d06-3244-409d-b4c3-5010ec8fcba7","originalAuthorName":"李在元"},{"authorName":"翟玉春","id":"89790637-5186-4e1c-aa44-c466c451561f","originalAuthorName":"翟玉春"},{"authorName":"杨帆","id":"c6380bbd-d1ed-4318-9076-b076d258766f","originalAuthorName":"杨帆"}],"doi":"","fpage":"1245","id":"a8e8b0ae-04fb-4376-ab86-3083344b5378","issue":"7","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"4ef4c9a1-862f-4baf-9ce6-195d4d8adb19","keyword":"合金粉","originalKeyword":"镍银合金粉"},{"id":"9e3eb1a4-2ce1-46ca-a478-fbdbb086b72f","keyword":"氢氧化-氧化银复合","originalKeyword":"氢氧化镍-氧化银复合粉"},{"id":"76c572bd-c413-46c2-a1f7-11d24f3adc7b","keyword":"化学共沉淀法","originalKeyword":"化学共沉淀法"},{"id":"f73e2e66-ebd5-4879-a5f5-d71739bec2b2","keyword":"封闭循环氢还原法","originalKeyword":"封闭循环氢还原法"}],"language":"zh","publisherId":"xyjsclygc200707026","title":"氢还原法制备80:20纳米复合的研究","volume":"36","year":"2007"},{"abstractinfo":"采用共沉淀法制备了氢氧化/还原氧化石墨烯复合材料,并以此为电极研究了其超级电容性能.实验发现,六方氢氧化纳米片被成功插入到还原氧化石墨烯的层间,这有效抑制了还原氧化石墨烯和氢氧化的团聚,提高了电极的稳定性.当氢氧化和还原氧化石墨烯的质量比为5.5∶1时,显示了最佳的电化学性能:在-0.1~0.37 V 的电位窗口,1 A/g 的电流密度下,比电容高达1036 F/g;4 A/g 的电流密度下快速循环3000次后,仍然保持70%的比电容.","authors":[{"authorName":"黄振楠","id":"7ac9fc70-eb16-419f-b461-79706d82f8a6","originalAuthorName":"黄振楠"},{"authorName":"寇生中","id":"20bc3238-9f04-4aa2-80f6-af5757732373","originalAuthorName":"寇生中"},{"authorName":"金东东","id":"43fc7325-c571-4f32-983e-357042ecbcae","originalAuthorName":"金东东"},{"authorName":"杨杭生","id":"078f396e-69a2-4c3c-ac95-b150f15553e2","originalAuthorName":"杨杭生"},{"authorName":"张孝彬","id":"86118d98-1fd3-4456-b3f6-4450894ff091","originalAuthorName":"张孝彬"}],"doi":"10.3969/j.issn.1001-9731.2015.05.017","fpage":"5084","id":"651a3bda-dbcb-42f6-9109-53e125243c4f","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"3ff3ff8d-a6a1-4f8b-ab79-c0de5c18d8f6","keyword":"超级电容器","originalKeyword":"超级电容器"},{"id":"7c368021-7a7d-421b-8e0c-54236721d2fc","keyword":"氢氧化","originalKeyword":"氢氧化镍"},{"id":"3e9f8f74-0364-4e9d-af18-ac31813c8c4e","keyword":"还原氧化石墨烯","originalKeyword":"还原氧化石墨烯"}],"language":"zh","publisherId":"gncl201505017","title":"氢氧化/还原氧化石墨烯复合物的超级电容性能?","volume":"","year":"2015"},{"abstractinfo":"采用三角波电位扫描、X射线衍射及恒流充放电曲线法研究了在氢氧化电极中添加Co(OH)2和Ni后对电极性能的影响.结果表明,氢氧化电极中加入质量分数为8%Co(OH)2和13%Ni时,电极的放电容量最高,电极在充放电循环过程中的膨胀最小.","authors":[{"authorName":"蒋洪寿","id":"b0414bdb-2799-4db4-a4d3-c9556aa81322","originalAuthorName":"蒋洪寿"},{"authorName":"张昊","id":"c936a6cc-52a4-49a2-adf7-5d81c38809a3","originalAuthorName":"张昊"}],"doi":"10.3969/j.issn.1000-0518.2000.06.012","fpage":"628","id":"befe0df0-c160-4c2e-b26c-49e8efa4e7ab","issue":"6","journal":{"abbrevTitle":"YYHX","coverImgSrc":"journal/img/cover/YYHX.jpg","id":"73","issnPpub":"1000-0518","publisherId":"YYHX","title":"应用化学"},"keywords":[{"id":"e637210e-d1c5-4e57-9bbb-31794721da1f","keyword":"MH-Ni电池","originalKeyword":"MH-Ni电池"},{"id":"6f4661ad-7e38-4b9a-8233-0e0c5faaeb8d","keyword":"氢氧化电极","originalKeyword":"氢氧化镍电极"},{"id":"12f55b36-09bc-473f-91c4-3c848830ff14","keyword":"Co(OH)2","originalKeyword":"Co(OH)2"},{"id":"545ece7a-d853-4a54-a40c-ec0aebb4ab07","keyword":"Ni","originalKeyword":"Ni粉"}],"language":"zh","publisherId":"yyhx200006012","title":"Co(OH)2和Ni氢氧化电极性能的影响","volume":"17","year":"2000"},{"abstractinfo":"研究了和石墨的混合物、石墨以及石墨和乙炔黑的混合物分别作为导电剂以机械混合的方式添加到电极活性物质中对氢氧化电极性能的影响,并用循环伏安法和交流阻抗法分析了实验结果.结果表明:在这四种导电剂中,作导电剂时氢氧化电极的性能最好,其次是以石墨或和石墨的混合物作导电剂的氢氧化电极,当石墨和乙炔黑的混合物作导电剂时氢氧化电极的性能最差.这是因为当作导电剂时氢氧化电极的电化学反应电阻最小,质子扩散最容易,电极的可逆性最好,且氧气析出最困难;而当石墨和乙炔黑的混合物作导电剂时氢氧化电极的电化学反应电阻最大,质子扩散最困难,电极充电过程和析氧过程几乎同时进行,因而充电效率最低,活性物质的利用率最小,电极性能最差.","authors":[{"authorName":"原鲜霞","id":"cc7480e3-0153-4034-a977-9a8ffe0abcf2","originalAuthorName":"原鲜霞"},{"authorName":"王荫东","id":"148823c8-7524-4500-a330-e4effb6110f4","originalAuthorName":"王荫东"},{"authorName":"詹锋","id":"f45d1a55-b727-4075-9304-ae711d5b60dc","originalAuthorName":"詹锋"}],"doi":"","fpage":"496","id":"d5b59a46-b2d6-4098-b39a-783a9ca4b4b7","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"597522ab-8e6e-42fc-90a0-fbdd632bb8cd","keyword":"氢氧化电极","originalKeyword":"氢氧化镍电极"},{"id":"e55922b5-ecc3-4a42-b05f-71a3556472f5","keyword":"导电剂","originalKeyword":"导电剂"},{"id":"b0e95c76-e31b-40ef-82f7-ae28e8427662","keyword":"循环伏安法","originalKeyword":"循环伏安法"},{"id":"bca314a9-c936-4796-a826-12feb47f3235","keyword":"交流阻抗法","originalKeyword":"交流阻抗法"}],"language":"zh","publisherId":"gncl200105017","title":"氢氧化电极导电剂的研究","volume":"32","year":"2001"},{"abstractinfo":"分别以化学共沉淀法和机械混合法制备了不同掺杂量的氢氧化,详细研究了掺杂方式和掺杂量对氢氧化晶体类型和结构的影响。XRD结果表明化学共沉淀法制得掺杂锌量在11%以下的氢氧化均为β型晶体结构,并且氢氧化的结晶程度随掺杂量的增加而提高,增加晶体缺陷,这些特征都将利于提高氢氧化的电化学性能;但共沉淀法掺杂量超过11%,机械混合法掺杂量超过1%后,在XRD图谱上出现明显的Zn(OH)2的特征峰,说明产品中出现了两种晶相,这对提高氢氧化的电化学性能是不利的。","authors":[{"authorName":"张金玉","id":"bae13731-0348-4f5b-ace8-1c3f3c787b61","originalAuthorName":"张金玉"},{"authorName":"常建勇","id":"5c1aae98-b28b-4fd2-9e08-b7376d56c05b","originalAuthorName":"常建勇"},{"authorName":"苗旺","id":"fd70dae5-f040-45f2-bb4d-b9cef71c88ed","originalAuthorName":"苗旺"},{"authorName":"常照荣","id":"7a18f852-62ff-4d2b-b2ba-5375b619e49e","originalAuthorName":"常照荣"}],"doi":"","fpage":"2298","id":"e35e54f8-de3b-44b9-a7cf-e0199e4326a5","issue":"12","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"d7298187-8ab3-4d20-a5c1-255ba595ef40","keyword":"氢氧化","originalKeyword":"氢氧化镍"},{"id":"4c5d9907-5dab-4f28-a58d-9764cc80089d","keyword":"掺杂","originalKeyword":"掺杂"},{"id":"066c2140-17ee-4095-94de-78f98932a52d","keyword":"化学共沉淀","originalKeyword":"化学共沉淀"},{"id":"016dd747-afa8-4340-b873-64175656de70","keyword":"机械混合","originalKeyword":"机械混合"}],"language":"zh","publisherId":"gncl201112045","title":"掺锌对氢氧化结构的影响","volume":"42","year":"2011"},{"abstractinfo":"用液相共沉淀技术制备了具有α-Ni(OH)2和β-Ni(OH)2混合结构的多相氢氧化,并且扫描电镜研究了其形貌,用XRD研究了其多相氢氧化形成的过程,探讨了在陈化过程中和用0.2C率充放电过程中的结构稳定性,通过充放电测试讨论了其放电性能.结果发现,通过控制掺杂元素和工艺条件,多相氢氧化在碱性溶液中结构稳定,充放电过程中能交换1.3个电子,其放电比容量最大可达375mAh/g,放电电位平台比β-Ni(OH)2电极高100mV左右.","authors":[{"authorName":"罗方承","id":"0fb07753-bfbd-4617-bbd1-8e185fee1cc7","originalAuthorName":"罗方承"},{"authorName":"陈启元","id":"27aaad59-3742-4092-bbcd-b6f309c7afc3","originalAuthorName":"陈启元"},{"authorName":"李新海","id":"663d76f9-3c09-4c45-b825-a24dddcf61a8","originalAuthorName":"李新海"}],"doi":"","fpage":"924","id":"a52fc2f2-8255-4365-9a4f-40e1e2973826","issue":"6","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"ac5dab70-5655-4a3f-9a39-fde83f40e29c","keyword":"多相氢氧化","originalKeyword":"多相氢氧化镍"},{"id":"5ae08b19-4fbf-4d38-9b5d-a76a649daa51","keyword":"结构","originalKeyword":"结构"},{"id":"6a27a9df-b47c-41c0-9f72-004379823343","keyword":"放电比容量","originalKeyword":"放电比容量"},{"id":"90f4cc3e-74e1-4745-8599-0e81d0b0848a","keyword":"振实密度","originalKeyword":"振实密度"},{"id":"4a5bdd85-2a5e-4df2-81e8-16cb7c15fac0","keyword":"放电电位","originalKeyword":"放电电位"}],"language":"zh","publisherId":"gncl200706020","title":"多相氢氧化的合成及其性能研究","volume":"38","year":"2007"},{"abstractinfo":"通过充放电曲线和交流阻抗谱的测定探讨了纳米级氢氧化氢氧化表面包复CoOOH以及箔上电镀钴层对氢氧化粉末压制的电极性能的影响.结果表明,纳米级氢氧化有较快的活化能力,CoOOH包Ni(OH)2则有较高的放电容量,而比例适当的纳米复合电极才有更好的电化学性能.氢氧化表面包复CoOOH可改善电极的充放电性能;箔上镀钴可大大降低电极过程的电荷转移电阻;钴含量大于3%后,虽然活化速度有所下降,但是大电流充放电时,电极活性物的利用率更高,放电容量更大.纳米级Ni(OH)2含量大于30%后,电极的活化速度不仅未能加快,反而略有减慢,而且容量也降低.","authors":[{"authorName":"郑辅养","id":"824ea3bb-f810-4da0-afc4-ed8bafb562ab","originalAuthorName":"郑辅养"},{"authorName":"余兴增","id":"a81e25c7-e41c-468b-8095-ac4b7adf24b3","originalAuthorName":"余兴增"},{"authorName":"蔡长寿","id":"047fbd68-b792-4c35-b5d4-0d6dcc7b6338","originalAuthorName":"蔡长寿"}],"doi":"","fpage":"167","id":"6c189f2e-48c3-4cea-b695-d0e27a5c7963","issue":"2","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"45ef97d0-ee6d-4e14-951e-05e08fbfd740","keyword":"纳米复合电极","originalKeyword":"纳米复合镍电极"},{"id":"4a48a116-1a10-4741-8116-e45d1ca5c3aa","keyword":"表面包复CoOOH","originalKeyword":"表面包复CoOOH"},{"id":"55b21d35-32b0-4f5a-b762-bba92bc3b310","keyword":"镀钴层","originalKeyword":"镀钴层"}],"language":"zh","publisherId":"gncl200302019","title":"纳米级氢氧化和钴对电极性能的影响","volume":"34","year":"2003"},{"abstractinfo":"球形氢氧化的微结构对氢电池(MH-Ni)电极的电化学性能有重要的影响.本文通过扫描电镜(SEM)和透射电镜(TEM)研究了用控制沉淀-结晶法制备的球形氢氧化的结构特征,并与传统非球形氢氧化进行了比较,同时讨论了球形氢氧化活性物质的电化学行为.研究结果表明,球形氢氧化体由微球颗粒组成,每一个微球由片状氢氧化叠砌而成,这种片状氢氧化晶粒又由约0.5nm厚的40层晶片组成,因而球形氢氧化是一种纳米结构材料.片状氢氧化晶粒在微球内基本上沿径向排列,晶粒之间相互连接形成三维网络结构,晶粒解理面之间存在许多孔隙或缝隙.这种结构在电池的充放电过程中具有良好的力学稳定性,微球内存在的孔隙或缝隙可以用作质子传递的通道而有利于缩短质子在固相中扩散的距离,从而降低电极极化和提高电极的电化学性能及使用寿命.","authors":[{"authorName":"沈湘黔","id":"3ed3b6c0-94af-456a-9d34-f979d014d9d6","originalAuthorName":"沈湘黔"},{"authorName":"彭美勋","id":"688e3729-af16-4f09-9359-0fbd7545df93","originalAuthorName":"彭美勋"},{"authorName":"景茂祥","id":"729078fb-24b9-4b9d-a336-3ce632e7e73e","originalAuthorName":"景茂祥"},{"authorName":"危亚辉","id":"de973356-2c6b-412a-a5ee-ceb53526186a","originalAuthorName":"危亚辉"}],"doi":"","fpage":"1798","id":"d484efb3-8b91-42d4-9547-9498125ffff0","issue":"11","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"471a7c4c-c5cf-47bf-883f-3a05ebf8206f","keyword":"球形氢氧化","originalKeyword":"球形氢氧化镍"},{"id":"3f13adc7-1080-491e-9647-52c10a898ea3","keyword":"结构特征","originalKeyword":"结构特征"},{"id":"1034a710-a1f4-4b42-853d-c44d12c04ab7","keyword":"质子传递","originalKeyword":"质子传递"},{"id":"c4563e99-c772-49aa-b623-da90ca31880b","keyword":"电化学行为","originalKeyword":"电化学行为"}],"language":"zh","publisherId":"gncl200511046","title":"电极活性物质球形氢氧化的结构特征研究","volume":"36","year":"2005"},{"abstractinfo":"锌蓄电池具有一系列优异的电化学性能(比能量高、内阻小等),使其在航空航天等应用领域中始终保持重要的地位.从锌蓄电池的关键部件--氧化银电极的制备和应用研究现状,根据氧化银电极的性能直接影响电池的工作效能和寿命,提出了氧化银电极应用中所面临的问题:即高阶电压段、迁移及过氧化银分解等,综述了解决这些问题的方法和改进措施,并探讨了锌蓄电池中氧化银电极的未来研究方向和发展趋势.","authors":[{"authorName":"张辉","id":"0f7fed6c-300c-4c8b-b337-be66a44b204e","originalAuthorName":"张辉"},{"authorName":"朱立群","id":"b7a6c7ac-426b-438d-ab54-310d0c948588","originalAuthorName":"朱立群"}],"doi":"","fpage":"1124","id":"8eb4588d-02a3-491f-9c9c-6372f6dc384e","issue":"6","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"6e0ca0e3-3547-4a06-872b-c0a3443ea760","keyword":"锌蓄电池","originalKeyword":"锌银蓄电池"},{"id":"0e795d92-2cf1-4792-9b86-7bfc7bfddc3a","keyword":"氧化银电极","originalKeyword":"氧化银电极"},{"id":"e6545565-e563-4c44-ab2f-08c5a0d0d320","keyword":"循环寿命","originalKeyword":"循环寿命"},{"id":"791adbee-0148-48bd-80cc-7b65aa51d56f","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"xyjsclygc200806043","title":"用于锌蓄电池氧化银电极的研究进展","volume":"37","year":"2008"},{"abstractinfo":"采用微乳液快速共沉淀法制备稀土La(Ⅲ)与Sr(Ⅱ)复合掺杂非晶态氢氧化体.样品材料的微观结构和形貌采用XRD,Raman光谱和SEM进行表征分析.将样品作为电极活性材料,组装成MH-Ni模拟电池,研究了稀土La(Ⅲ)与Sr(Ⅱ)复合掺杂对氢氧化电极材料电化学性能的影响及其相应的作用机理.实验结果发现,在0.1 C恒电流放电,终止电压为1.0 V的放电制度下,La(Ⅲ)与Sr(Ⅱ)复合掺杂样品的放电平台为1.265 V.放电容量为340.56mAh·g-1,且电极材料在充放电过程中的稳定性和循环可逆性较好,并能有效抑制析氧反应的发生.","authors":[{"authorName":"刘长久","id":"16075ba1-169f-4ec6-bae7-f1c26a092564","originalAuthorName":"刘长久"},{"authorName":"吴华斌","id":"aa711b16-57fa-4663-8708-571b28a02ebd","originalAuthorName":"吴华斌"},{"authorName":"李延伟","id":"7b78fcaf-43bb-49e2-9e97-2ab725705f7a","originalAuthorName":"李延伟"},{"authorName":"陈世娟","id":"e94bc678-5125-4e0c-93e2-7925c2d5d2eb","originalAuthorName":"陈世娟"}],"doi":"10.3969/j.issn.1001-4381.2008.10.018","fpage":"68","id":"3a555e89-793f-4460-9e41-b1ebd05e6656","issue":"10","journal":{"abbrevTitle":"CLGC","coverImgSrc":"journal/img/cover/CLGC.jpg","id":"9","issnPpub":"1001-4381","publisherId":"CLGC","title":"材料工程"},"keywords":[{"id":"9185bac5-1e9b-4524-b4ae-292548ef1ea6","keyword":"微乳液法","originalKeyword":"微乳液法"},{"id":"62c61ee9-2d6c-4e38-ae94-24dee80b5df9","keyword":"复合掺杂","originalKeyword":"复合掺杂"},{"id":"6b760ac9-1b60-4446-a876-a2b70e8ce7e1","keyword":"非晶态氢氧化","originalKeyword":"非晶态氢氧化镍"},{"id":"27de3731-a32b-484e-8f9d-11151ce9b519","keyword":"电化学性能","originalKeyword":"电化学性能"}],"language":"zh","publisherId":"clgc200810018","title":"La(Ⅲ)与Sr(Ⅱ)复合掺杂非晶态氢氧化电化学性能研究","volume":"","year":"2008"}],"totalpage":6890,"totalrecord":68891}