{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"运用Liouville方程和诺维科夫原理,解出了关联噪声和周期信号共同驱动的非对称双稳系统的近似福克-普朗克方程,并求解了其稳态概率密度函数.在此基础上,分析了乘性噪声强度D、加性噪声强度Q、噪声间关联系数λ,周期信号振幅A、频率Ω以及系统非对称参数r等对稳态概率密度分布曲线的影响.结果表明:1)噪声强度及其关联、周期信号振幅、系统非对称参数的改变均能引起稳态概率密度分布曲线单峰结构和双峰结构之间的转换,即能够诱导非平衡相变产生; 2)周期信号频率改变时,没有非平衡相变发生; 3)当系统非对称参数为零时,稳态概率密度分布曲线具有关于x=0的对称结构;当系统非对称参数不等于零时,其对称结构被破坏.","authors":[{"authorName":"王国威","id":"72ecdacf-dda5-4d29-abef-4eb342c27b7e","originalAuthorName":"王国威"},{"authorName":"程庆华","id":"4a1abfc1-c0e3-42ea-8e23-f5137b672311","originalAuthorName":"程庆华"},{"authorName":"徐大海","id":"6ee6250b-47dd-474e-9020-38d53c41ba9e","originalAuthorName":"徐大海"}],"doi":"10.3969/j.issn.1007-5461.2014.01.013","fpage":"86","id":"c3eab09b-3471-45e3-90da-60b3774ec756","issue":"1","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"d2ce8958-aec9-4809-84cd-9646ebfd2cf0","keyword":"非线性光学","originalKeyword":"非线性光学"},{"id":"964addf1-844c-4896-a90a-81489d3a57fb","keyword":"非对称双稳系统","originalKeyword":"非对称双稳系统"},{"id":"20006a6e-2d9b-4335-92b5-640d08be3eac","keyword":"福克-普朗克方程","originalKeyword":"福克-普朗克方程"},{"id":"8f52acb4-ae7f-40bb-b8a4-7bc3a66841b5","keyword":"噪声","originalKeyword":"噪声"},{"id":"f94ab433-9afa-403c-bfbd-8ac2f0b7e0b6","keyword":"稳态概率密度","originalKeyword":"稳态概率密度"}],"language":"zh","publisherId":"lzdzxb201401013","title":"关联噪声和周期信号驱动非对称双稳系统的稳态分析","volume":"31","year":"2014"},{"abstractinfo":"由有燃烧的湍流气粒两相流动的瞬态方程和统计力学概率密度函数概念出发,推导了有燃烧颗粒相的质量-动量-能量联合概率密度函数(PDF)输运方程,并对方程中条件期望项用梯度模拟概念进行了模拟封闭.封闭后的PDF方程可作为建立颗粒拟流体模型方程和封闭二阶矩模型的基础、也可以通过Monte-Carlo法求解用以直接计算颗粒雷诺应力和湍流动能,以便和二阶矩模型的结果相对照,改善二阶矩模型.","authors":[{"authorName":"周力行","id":"77dcb39e-f5d7-45c5-b3d8-7439f926ea02","originalAuthorName":"周力行"},{"authorName":"郑楚光","id":"58c8d88c-5d89-4f68-a617-c32dfbbab305","originalAuthorName":"郑楚光"},{"authorName":"柳朝晖","id":"a1a2075f-8a29-4e69-b55c-2fdb2be83a09","originalAuthorName":"柳朝晖"}],"doi":"","fpage":"247","id":"2947ff1c-177c-4671-9a00-69ebed3b2b2d","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"db95871d-bfa0-4e4e-8e4d-74787f35d146","keyword":"湍流","originalKeyword":"湍流"},{"id":"2e340c46-e2b8-4df3-93ca-cb173d628b4f","keyword":"气粒两相流动","originalKeyword":"气粒两相流动"},{"id":"aeb6b6f4-c93d-4074-a5b1-1abeb07a6ea0","keyword":"燃烧","originalKeyword":"燃烧"},{"id":"8bea11e4-7af9-4775-93a4-7fd0b4f9654a","keyword":"PDF输运方程","originalKeyword":"PDF输运方程"}],"language":"zh","publisherId":"gcrwlxb200002027","title":"湍流两相流动有燃烧颗粒相概率密度函数输运方程理论","volume":"21","year":"2000"},{"abstractinfo":"在抛物量子点中电子与体纵光学声子强耦合且在库仑场束缚条件下,应用Pekar变分方法,得出了电子的基态和第一激发态的本征能量及基态和第一激发态的本征波函数.以量子点中这样的二能级体系作为一个量子比特.当电子处于基态和第一激发态的叠加态时,计算出电子在时空中作周期性振荡的概率分布.并且得出了概率分布与库仑场、耦合强度、受限强度的变化关系.","authors":[{"authorName":"陈英杰","id":"0aeda6e0-45ea-4352-8da6-6468b4502120","originalAuthorName":"陈英杰"},{"authorName":"肖景林","id":"b15363b4-19f1-4115-940a-0933ab1f089d","originalAuthorName":"肖景林"}],"doi":"10.3969/j.issn.1007-5461.2012.05.015","fpage":"602","id":"c984ec98-8493-45a4-bc16-b9c14f3ede98","issue":"5","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"11c79816-b655-4169-9190-60c25f452cb0","keyword":"量子光学","originalKeyword":"量子光学"},{"id":"abf271cf-c1c2-4332-8152-7997e2f15ad8","keyword":"库仑场","originalKeyword":"库仑场"},{"id":"83a708e7-d57f-4583-8b2f-ad19442da31a","keyword":"Pekar变分法","originalKeyword":"Pekar变分法"},{"id":"114c7000-73ec-473b-9d26-bc7b99ca2eb1","keyword":"量子点","originalKeyword":"量子点"},{"id":"6b3fd9dc-5e94-401c-8d5b-f01c9485bf7b","keyword":"量子比特","originalKeyword":"量子比特"}],"language":"zh","publisherId":"lzdzxb201205015","title":"库仑场对抛物线性限制势二能级系统量子点量子比特概率密度的影响","volume":"29","year":"2012"},{"abstractinfo":"采用稳态的和非稳态的火焰面模型同时对一个湍流甲烷射流扩散火焰进行了数值模拟,比较了两者对湍流平均火焰结构、活性自由基和污染物(氮氧化物)排放的模拟效果.速度场采用κ-ε模型计算,守恒标量混合物分数的分布通过其概率密度函数(PDF)输运方程的求解得到.稳态的火焰面结构由查询火焰面数据库得到,而非稳态的火焰面结构由火焰面方程和流场方程耦合求解来计算.采用详细的GRI-Mech 3.0机理描述甲烷的氧化和氮氧化物的形成.数值模拟结果和实验数据作了广泛的对比,验证了火焰面模型对湍流扩散燃烧的定量模拟能力.","authors":[{"authorName":"王海峰","id":"4e10cf67-981e-4bbd-8c15-10c6389437a3","originalAuthorName":"王海峰"},{"authorName":"陈义良","id":"18f6bb3a-8cc5-436a-b50d-2574643cd5a2","originalAuthorName":"陈义良"}],"doi":"","fpage":"329","id":"dce9bbf9-9b36-42fc-a2f4-74b35ba19898","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"634fd3c2-42d1-4044-9f18-8891d2e86f4f","keyword":"湍流扩散火焰","originalKeyword":"湍流扩散火焰"},{"id":"e0c427d5-614a-4824-b8d6-93231108591c","keyword":"非稳态火焰面模型","originalKeyword":"非稳态火焰面模型"},{"id":"61e15c69-b386-4dd7-8806-ce89f19dac09","keyword":"к-ε","originalKeyword":"к-ε"},{"id":"7a2bdf91-41d8-4dd1-bee9-0ca9e20ff330","keyword":"PDF","originalKeyword":"PDF"},{"id":"d5ea6857-3eec-400f-b14f-bdb9bce3471c","keyword":"氮氧化物","originalKeyword":"氮氧化物"}],"language":"zh","publisherId":"gcrwlxb200402046","title":"湍流扩散火焰的非稳态火焰面模拟","volume":"25","year":"2004"},{"abstractinfo":"在关键块体稳定性的研究过程中,传统方法需要通过力学试验获得岩体力学参数,然而由于岩体结构复杂,力学试验样本数量有限,很难确定某一个力学参数的概率密度分布,严重影响传统随机概率可靠性分析方法的准确性.当采用区间非概率可靠性分析方法计算可靠度时,通常采用区间数来表示参数的取值,能够较好地反映样本数据较少时参数取值的不确定性,确定某一参数的取值范围比确定参数的概率分布容易.根据区间数学理论,采用区间数表示参数取值,在分析参数取值特性基础上,采用岩体区间强度值,以此反映围岩可靠性分析的不确定性特征.通过探讨区间非概率可靠性指标求解方法,建立爆破荷载下区间可靠性综合分析模型.将提出的方法应用到具体工程中.结果表明:区间非概率可靠性分析与安全系数区间范围和随机可靠度相比,具有无需求解概率密度函数,通过较少样本的区间表示即可实现可靠性分析,能够表征关键块体整体稳定可靠特征的优点.","authors":[{"authorName":"高赛红","id":"b28a61b4-ee0f-495a-94df-6a7e2e6a3193","originalAuthorName":"高赛红"},{"authorName":"曹平","id":"f3189b4f-150d-4132-9338-33cc67c19b48","originalAuthorName":"曹平"},{"authorName":"汪胜莲","id":"57606d78-a0a9-433e-b6e6-0e553526ef2d","originalAuthorName":"汪胜莲"},{"authorName":"陈瑜","id":"e0697773-9c5f-4140-9e33-8963f7e648b0","originalAuthorName":"陈瑜"}],"doi":"","fpage":"325","id":"f62e384d-3390-4060-ba94-44355d5d44b1","issue":"2","journal":{"abbrevTitle":"ZGYSJSXB","coverImgSrc":"journal/img/cover/ZGYSJSXB.jpg","id":"88","issnPpub":"1004-0609","publisherId":"ZGYSJSXB","title":"中国有色金属学报"},"keywords":[{"id":"a3c48ea1-266b-4ba9-b6ea-1481d6aad7f3","keyword":"爆破荷载","originalKeyword":"爆破荷载"},{"id":"7e495574-7229-4f37-900b-1bc84e5f989e","keyword":"损伤","originalKeyword":"损伤"},{"id":"e7412638-f149-46b9-98a4-409c19bc6bed","keyword":"巷道","originalKeyword":"巷道"},{"id":"fa16830d-092b-48ff-a558-2a339e6e01bc","keyword":"关键块体","originalKeyword":"关键块体"},{"id":"84517d11-efab-4958-828e-5970ff4698d2","keyword":"区间非概率可靠性","originalKeyword":"区间非概率可靠性"}],"language":"zh","publisherId":"zgysjsxb201702013","title":"爆破荷载下巷道关键块体区间的非概率可靠性","volume":"27","year":"2017"},{"abstractinfo":"基于无限大平板模型的非稳态热传导理论,推导了适用于中密度纤维板试件在空气介质加热条件下的温度场和达到目标温度加热时间的解析方程,采用ANSYS有限元软件对加热过程进行了有限元建模和模拟分析。验证试验分别测试研究了介质温度、试件厚度和幅面尺寸对温升行为的影响,并与解析法和有限元模拟法获得的结果进行了比较。结果表明,理论解析法和有限元模拟得到的温升曲线与实测温升曲线吻合,试件达到目标温度时间与实测值相比最大误差为2.0%,验证了解析解和有限元模型的有效性。","authors":[{"authorName":"周建徽","id":"2bbd01e7-3e06-4721-88ae-ce4c34482ff7","originalAuthorName":"周建徽"},{"authorName":"胡传双","id":"b4b686b3-34e8-4d83-a0cf-bc54c98d560f","originalAuthorName":"胡传双"},{"authorName":"胡硕飞","id":"f08b22a2-2cb4-4a98-9fa6-e708869586f8","originalAuthorName":"胡硕飞"},{"authorName":"云虹","id":"b053cfc4-7b00-4b6d-8d27-2b948ac21231","originalAuthorName":"云虹"},{"authorName":"姜贵芬","id":"09cb68d4-c6b7-4c11-9476-96cf7986e98d","originalAuthorName":"姜贵芬"},{"authorName":"张仕康","id":"57af7e50-d61b-4b8c-ba46-aecf24fea54d","originalAuthorName":"张仕康"}],"doi":"","fpage":"143","id":"9c60c37c-7b30-4870-8398-15c216387fa2","issue":"5","journal":{"abbrevTitle":"CLRCLXB","coverImgSrc":"journal/img/cover/CLRCLXB.jpg","id":"15","issnPpub":"1009-6264","publisherId":"CLRCLXB","title":"材料热处理学报"},"keywords":[{"id":"fa94993b-cbe7-490b-8ea4-9e4df3ba7349","keyword":"热传导","originalKeyword":"热传导"},{"id":"e928ec9a-daa5-4854-bdda-e0eb61488988","keyword":"有限元分析","originalKeyword":"有限元分析"},{"id":"87bc90df-5d83-4dac-9f5d-e5aad8f533b0","keyword":"木质复合材料","originalKeyword":"木质复合材料"}],"language":"zh","publisherId":"jsrclxb201205029","title":"中密度纤维板非稳态热传导解析及数值模拟","volume":"33","year":"2012"},{"abstractinfo":"对观测到的T12钢珠光体组织片层间距数据分别进行了正态分布、对数正态分布、三参数威布尔分布和三参数对数正态分布的参数估计,并利用相关系数,K-S检验法,相关指数及概率分布P-P图对估计结果进行了拟合优度检验,结果表明钢中珠光体组织层片的观测间距的最优概率分布函数为三参数对数正态分布.通过概率密度曲线的对比,指出了基于\"半球模型\"测定钢中珠光体真实平均片层间距的诸方法在原理上存在的不足,并提出了利用三参数对数正态分布函数来测定珠光体片层间距的方法.","authors":[{"authorName":"王海滨","id":"97c27769-eaed-471c-a206-34a197e9e157","originalAuthorName":"王海滨"},{"authorName":"宗斌","id":"9e193947-c98a-4798-b532-195c2926e836","originalAuthorName":"宗斌"},{"authorName":"宋晓艳","id":"3843b2d7-f883-4687-bd52-c0639b13c312","originalAuthorName":"宋晓艳"},{"authorName":"刘文彬","id":"3a418bc2-ade0-40ca-9ebb-9cb43cf750c1","originalAuthorName":"刘文彬"}],"doi":"","fpage":"33","id":"d0d92d48-d0be-4981-9ebe-e9611107ceac","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"c3d875c6-6451-462d-a4fe-46a8c43f83d5","keyword":"珠光体片层间距","originalKeyword":"珠光体片层间距"},{"id":"88fa90ec-5ac4-4483-81c6-ba3fc325c2ad","keyword":"半球模型","originalKeyword":"半球模型"},{"id":"88277337-f8c7-4412-8715-e7fc7e920299","keyword":"三参数对数正态分布","originalKeyword":"三参数对数正态分布"}],"language":"zh","publisherId":"wlcs200902009","title":"T12钢中珠光体片层间距的概率分布测量法","volume":"27","year":"2009"},{"abstractinfo":"考虑角动量相关性的情况下计算了超重核259Db的裂变位垒Bf.计算了258Rf,259Db,266Hs和267Mt 4个超重核单中子蒸发的存活概率Wsur及其随角动量分波的变化关系.给出了中子蒸发宽度、裂变宽度和超重核蒸发一个中子的概率对激发能与角动量分波的依赖关系.","authors":[{"authorName":"贾飞","id":"e1a876f3-0bc9-4dba-b2ca-0246937d890a","originalAuthorName":"贾飞"},{"authorName":"岳柯","id":"dfe78ff3-2295-4e8c-b851-625e7eae347d","originalAuthorName":"岳柯"},{"authorName":"涂小林","id":"d097f8a7-4179-4f82-9869-d662b4481031","originalAuthorName":"涂小林"},{"authorName":"杨彦云","id":"0ba3763d-4797-4a28-ac13-a6b824c9ba06","originalAuthorName":"杨彦云"},{"authorName":"张宏斌","id":"04c7376b-f883-44ee-9c27-989da898d509","originalAuthorName":"张宏斌"},{"authorName":"徐瑚珊","id":"0c1735fe-0bf5-45c7-830d-69e30120f0a6","originalAuthorName":"徐瑚珊"},{"authorName":"李君清","id":"452877b0-f56d-4f44-a0a4-03b536a8c46e","originalAuthorName":"李君清"}],"doi":"10.3969/j.issn.1007-4627.2007.03.005","fpage":"190","id":"1adf6ac0-21c9-423c-be5d-88a8efea4ee5","issue":"3","journal":{"abbrevTitle":"YZHWLPL","coverImgSrc":"journal/img/cover/YZHWLPL.jpg","id":"78","issnPpub":"1007-4627","publisherId":"YZHWLPL","title":"原子核物理评论 "},"keywords":[{"id":"bdc9f221-256f-4edd-b607-e22cc7f92f0d","keyword":"超重元素","originalKeyword":"超重元素"},{"id":"10d0cead-5825-42b8-8293-5f6c7235f4fb","keyword":"存活概率","originalKeyword":"存活概率"},{"id":"c07f6046-d732-4ca6-8116-4d786a1d514c","keyword":"裂变位垒","originalKeyword":"裂变位垒"},{"id":"659918c3-065f-42ef-835f-269ba868ab79","keyword":"中子蒸发宽度","originalKeyword":"中子蒸发宽度"},{"id":"676b53d7-0387-41a9-a0e2-ac21dc1e28cf","keyword":"裂变宽度","originalKeyword":"裂变宽度"}],"language":"zh","publisherId":"yzhwlpl200703005","title":"超重复合核的存活概率","volume":"24","year":"2007"},{"abstractinfo":"对于具有一定形式非线性的薛定谔方程,存在单孤子解的多稳态,也就是说对于相同能量,单孤子具有不同的传输常数.本文以一非线性形式Linear Smooth Step(LSS)函数为例,对孤子的双稳态进行理论分析,并对其双稳态的光学转换进行数值模拟.","authors":[{"authorName":"张俊萍","id":"b801a67d-87cd-4d3d-a2e5-2571e2481b0d","originalAuthorName":"张俊萍"},{"authorName":"杨性愉","id":"deca5146-f66e-4dda-bf21-017a59b452d1","originalAuthorName":"杨性愉"}],"doi":"10.3969/j.issn.1007-5461.2002.01.007","fpage":"31","id":"4b6d0afc-f869-4d6a-b70e-9f738d9d5ebd","issue":"1","journal":{"abbrevTitle":"LZDZXB","coverImgSrc":"journal/img/cover/LZDZXB.jpg","id":"53","issnPpub":"1007-5461","publisherId":"LZDZXB","title":"量子电子学报 "},"keywords":[{"id":"634d6d1e-affd-49c5-ba4f-c4b7522ed26c","keyword":"非线性薛定谔方程","originalKeyword":"非线性薛定谔方程"},{"id":"ddfbf32b-aa2e-4aa3-94d9-2f5be9e03edc","keyword":"双稳态孤子","originalKeyword":"双稳态孤子"},{"id":"9d18de60-ea93-4cb2-bd27-95d0c912546b","keyword":"光学转换","originalKeyword":"光学转换"}],"language":"zh","publisherId":"lzdzxb200201007","title":"双稳态孤子","volume":"19","year":"2002"},{"abstractinfo":"本文基于污垢形成的随机性,在给定风险水平的条件下,利用概率方法和在污垢形成过程中,污垢热阻达到临界可接受水平的时间遵循分布规律,同时考虑初始污垢热阻影响,推导给出了考虑初始污垢热阻的污垢模型,并用实验验证了模型的可用性.","authors":[{"authorName":"徐志明","id":"82d7d2b8-a88f-4293-accf-5b69ea19d742","originalAuthorName":"徐志明"},{"authorName":"郭淑青","id":"0700a83b-89ab-4438-81ca-a510b8eb69aa","originalAuthorName":"郭淑青"},{"authorName":"杨善让","id":"41aa5959-82fb-40c8-a090-2d135d3dd21d","originalAuthorName":"杨善让"},{"authorName":"孙灵芳","id":"4ce39cc2-ac3e-457b-8be6-350bf6f4a42d","originalAuthorName":"孙灵芳"},{"authorName":"董向元","id":"32e0b7d5-107e-4138-bd80-bbe4458a3348","originalAuthorName":"董向元"}],"doi":"","fpage":"322","id":"c16e3564-d09e-4ef9-9fdc-694d727e70ae","issue":"2","journal":{"abbrevTitle":"GCRWLXB","coverImgSrc":"journal/img/cover/GCRWLXB.jpg","id":"32","issnPpub":"0253-231X","publisherId":"GCRWLXB","title":"工程热物理学报 "},"keywords":[{"id":"55c2e760-b67b-4345-b20e-5404d87dba9a","keyword":"概率","originalKeyword":"概率"},{"id":"3738401a-806a-4ca7-a87e-3b5723753318","keyword":"污垢","originalKeyword":"污垢"},{"id":"43aea9a0-61aa-4cc0-8911-31b51429cd31","keyword":"分析模型","originalKeyword":"分析模型"}],"language":"zh","publisherId":"gcrwlxb200302043","title":"基于概率分析的污垢模型","volume":"24","year":"2003"}],"totalpage":1839,"totalrecord":18382}