{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用微波辐射加热的方法,在水相中一步合成出高质量的谷胱甘肽修饰的Zn1-xCdxTe三元量子点,利用X射线粉末衍射(XRD)、高分辨透射电镜(HRTEM)、紫外-可见吸收光谱(UV-Vis)和荧光发射光谱(PL)等技术表征产物的物相结构和光学性质.研究了不同反应条件(如反应时间、Cd2+/Zn2+投料比、反应温度、前驱体溶液pH值)对量子点荧光性能的影响.采用MTT法研究Zn1-xCdxTe三元量子点的细胞毒性,进一步将制备好的三元量子点与肌动蛋白抗体结合作为荧光探针初步应用于细胞标记.","authors":[{"authorName":"王宇芃","id":"f3104ca1-1757-4562-aa63-f5cbbbb8673c","originalAuthorName":"王宇芃"},{"authorName":"杜婕","id":"98ee191c-234b-4c17-805e-314e964b23e5","originalAuthorName":"杜婕"},{"authorName":"王胜江","id":"f6b84516-dbad-40d6-a3ac-7ac0133fbe73","originalAuthorName":"王胜江"},{"authorName":"吴拥中","id":"98fb49db-bcd6-4b04-a4c3-094f4bf53015","originalAuthorName":"吴拥中"},{"authorName":"徐成伟","id":"5aaede4b-b493-4168-96ee-48d6fc8b70e3","originalAuthorName":"徐成伟"},{"authorName":"郝霄鹏","id":"2720cc64-a5df-4a25-a0e7-14c9f568ca44","originalAuthorName":"郝霄鹏"}],"doi":"10.3969/j.issn.1001-9731.2013.增刊(Ⅰ).010","fpage":"48","id":"17b026e8-cc32-4ed2-828c-051771b17289","issue":"z1","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"21fa6dd4-6ad6-4b46-9177-63e8f01eca0d","keyword":"微波辐射","originalKeyword":"微波辐射"},{"id":"74972287-fa3b-4c60-88ee-a5b974a6a34b","keyword":"Zn1-xCdxTe三元量子点","originalKeyword":"Zn1-xCdxTe三元量子点"},{"id":"11497981-e9d6-400e-987d-d9f92335afe1","keyword":"谷胱甘肽","originalKeyword":"谷胱甘肽"},{"id":"0406ef61-b25b-48f4-9bb2-5036bd5366b0","keyword":"细胞毒性","originalKeyword":"细胞毒性"},{"id":"125c690e-3e7e-459a-bccb-caf97d06a1ab","keyword":"细胞标记","originalKeyword":"细胞标记"}],"language":"zh","publisherId":"gncl2013z1010","title":"Zn1-xCdxTe三元量子点的微波合成及其生物相容性研究","volume":"44","year":"2013"},{"abstractinfo":"采用前驱体分解法制备了 Cu-In-S 量子点,研究了制备工艺对Cu-In-S 量子点的形貌以及光学性能的影响.实验结果表明,反应时间和反应温度可影响Cu-In-S 纳米颗粒的尺寸和光学性能.随时间增加,Cu-In-S粒径变大,同时会伴随着棒状晶体的出现,荧光发射谱的峰位发生红移.随反应温度升高,纳米晶的形核速率和长大速率增加,并且粒径也有增大,纳米晶的形状可以由单一的球形变为球形与棒状的混合,荧光谱峰位亦会发生红移.X 射线光电子能谱分析表明,所制备颗粒为 CuInS2纳米晶.为进一步制备无毒量子点发光器件(QLEDs)奠定了基础.","authors":[{"authorName":"王海成","id":"1bf5a905-6381-42c0-b399-1ac483a9faf6","originalAuthorName":"王海成"},{"authorName":"张雪","id":"f86e71bf-920c-49a4-8861-5faf20390621","originalAuthorName":"张雪"},{"authorName":"周洁","id":"41b4cff6-3aa8-44d4-812c-721956b80f90","originalAuthorName":"周洁"},{"authorName":"姚易","id":"3853898e-6ce8-4159-9132-1dca1c7984c3","originalAuthorName":"姚易"},{"authorName":"吴瑞伟","id":"869d763b-5637-4001-a593-1c195bf8324c","originalAuthorName":"吴瑞伟"},{"authorName":"邓玲","id":"ebe9c1f1-60bb-4885-836d-83252777526b","originalAuthorName":"邓玲"},{"authorName":"闫智然","id":"9f8417d7-737a-444f-b749-bb310bf8175d","originalAuthorName":"闫智然"},{"authorName":"曹进","id":"8ffeacf5-38a3-43f2-8c67-59680200a947","originalAuthorName":"曹进"}],"doi":"10.3969/j.issn.1001-9731.2015.05.021","fpage":"5106","id":"870d14c6-4636-4de6-8953-a3c7f49ff771","issue":"5","journal":{"abbrevTitle":"GNCL","coverImgSrc":"journal/img/cover/GNCL.jpg","id":"33","issnPpub":"1001-9731","publisherId":"GNCL","title":"功能材料"},"keywords":[{"id":"cd0be9e1-2287-4e95-bf47-2d2330cd1b55","keyword":"CuInS","originalKeyword":"CuInS"},{"id":"2b4f7e39-be5e-4957-bd77-e81d7551b7d2","keyword":"量子点","originalKeyword":"量子点"},{"id":"bd1c4019-269c-46bc-9a0d-cbe9b13333d5","keyword":"化学合成","originalKeyword":"化学合成"},{"id":"1fd7f889-68d6-4877-b3ac-52d11d41a0dd","keyword":"PL 光谱","originalKeyword":"PL 光谱"},{"id":"71a804ef-5671-44e6-8058-78965c6e3c6e","keyword":"QLEDs","originalKeyword":"QLEDs"}],"language":"zh","publisherId":"gncl201505021","title":"Cu-In-S三元量子点的合成及其性能调控?","volume":"","year":"2015"},{"abstractinfo":"利用扫描电镜、电子探针、X射线衍射仪和透射电镜对Mg-Zn-Nd系低Nd三元化合物T1相的成分、结构及其相平衡关系进行了研究.结果表明,在Mg-Zn-Nd系低Nd侧存在一个六方结构的三元化合物T1相,其晶格常数为a=b=1.5 nm、c=0.87 nm;其成分(原子分数,%)范围为:Mg 27.0-33.4,Zn 60.2-66.4,Nd 6.1-7.4.该化合物在300-400 ℃的温度区间与α-Mg存在两相平衡.在300,350和400 ℃时分别存在T1+α-Mg+MgZn,T1+MgZn+L及T1+Mg2Zn3+L三相区.","authors":[{"authorName":"黄明丽","id":"aa01b503-60ad-435a-9db6-30b2cbaff520","originalAuthorName":"黄明丽"},{"authorName":"李洪晓","id":"ddf71b87-aa90-42e6-8806-83a08d68260f","originalAuthorName":"李洪晓"},{"authorName":"杨金艳","id":"bf6e9646-fa23-4d6a-823f-8e5fec6309bc","originalAuthorName":"杨金艳"},{"authorName":"任玉平","id":"98d8be2a-5a94-43ec-a6d7-3891380d0164","originalAuthorName":"任玉平"},{"authorName":"丁桦","id":"1e6480cb-65fa-47cb-8120-2be4f55b4493","originalAuthorName":"丁桦"},{"authorName":"郝士明","id":"7dd638fa-f35d-4ea6-bf7f-ccd18479062f","originalAuthorName":"郝士明"}],"doi":"10.3321/j.issn:0412-1961.2008.04.001","fpage":"385","id":"2cd81dd9-d354-4b4f-9775-efaa1deff90f","issue":"4","journal":{"abbrevTitle":"JSXB","coverImgSrc":"journal/img/cover/JSXB.jpg","id":"48","issnPpub":"0412-1961","publisherId":"JSXB","title":"金属学报"},"keywords":[{"id":"45f89d9f-40b5-4222-8694-2f6ccdaf5e84","keyword":"Mg-Zn-Nd合金","originalKeyword":"Mg-Zn-Nd合金"},{"id":"aa45b690-4a29-4b3f-9b60-55f2adbb218a","keyword":"三元化合物","originalKeyword":"三元化合物"},{"id":"e0f7e463-bebb-43f0-a853-be85e1d3f15d","keyword":"结构与成分","originalKeyword":"结构与成分"},{"id":"fb0d6132-38fe-4c23-a3db-4d9c2bc98073","keyword":"相平衡","originalKeyword":"相平衡"}],"language":"zh","publisherId":"jsxb200804001","title":"Mg-Zn-Nd合金中的低Nd三元化合物T1相的研究","volume":"44","year":"2008"},{"abstractinfo":"结合最新报道的Al-Zn-Fe三元系热力学数据,利用CALPHAD技术,对Al-Zn-Fe三元系的热力学模型参数进行优化;并制备Al96.75Zn3.25/Fe(at%)扩散偶,将其在300 ℃下退火52.5天后取出水淬,利用EPMA对扩散层中存在的相进行检测.研究结果表明,优化后的Al-Zn-Fe三元数据计算所得各二元系相图、三元等温截面相图及热力学数据与实验值相符,该模型及参数可作为向高元体系外推的基础.","authors":[{"authorName":"杨帆","id":"d8982f72-fcb5-4a24-b3bf-7ba1e7235b47","originalAuthorName":"杨帆"},{"authorName":"张捷宇","id":"5df6a557-e242-42df-8cef-c76660cd6bcc","originalAuthorName":"张捷宇"},{"authorName":"李谦","id":"45200b26-2faa-4259-87ab-dd19854dcee6","originalAuthorName":"李谦"},{"authorName":"陈双林","id":"c26d3d14-3863-4259-9a8f-3ff95b3478b0","originalAuthorName":"陈双林"},{"authorName":"周国治","id":"ac1e1266-d6a7-45b3-8a05-ec98417d749b","originalAuthorName":"周国治"}],"doi":"10.3969/j.issn.1001-7208.2010.05.002","fpage":"8","id":"5f550133-488d-4b38-bc51-ebc5a63e8010","issue":"5","journal":{"abbrevTitle":"SHJS","coverImgSrc":"journal/img/cover/SHJS.jpg","id":"59","issnPpub":"1001-7208","publisherId":"SHJS","title":"上海金属"},"keywords":[{"id":"e5b86a2f-e29f-4d1a-99d2-b917d5ef1630","keyword":"Al-Zn-Fe三元系","originalKeyword":"Al-Zn-Fe三元系"},{"id":"f134f460-3a2d-4111-b29a-f8a4b8a096d4","keyword":"相图","originalKeyword":"相图"},{"id":"edb00602-eb52-4039-862f-c8827c99073a","keyword":"热力学计算","originalKeyword":"热力学计算"},{"id":"e96fa6fd-8b26-483b-aeed-622be62bd988","keyword":"扩散偶法","originalKeyword":"扩散偶法"}],"language":"zh","publisherId":"shjs201005002","title":"Al-Zn-Fe三元系相平衡优化及实验验证","volume":"32","year":"2010"},{"abstractinfo":"为了获得光亮、致密和耐蚀性好的Zn-Fe-La三元合金镀层,试验研究了氯化物体系中电沉积Zn-Fe-La三元合金的工艺条件.通过考察镀液成分、pH值、添加荆、稀土盐对合金镀层的影响,确立适宜的镀液配方和工艺条件.结果表明,最佳配方及工艺条件:60~120 g/L FeSO4·7H2O,30~50g/L znCl2·7H2O,4~10g/L LaCl3,10 g/L C6H8O7·H2O,40 g/L C6 H5Na 3O7·2H2O,100 g/L KCl,2 g/L抗坏血酸,6 g/L苄又丙酮,7mL/L ZF光亮剂,2 g/L聚乙二醇(分子量大于6000),pH值为3,施镀时间10 min,电流密度J=3.5 A/dm2,室温.在该工艺条件下,可在水溶液中电沉积出稀土含量为4.61%的Zn-Fe-La三元合金.同时,稀土的加入能改变镀层成分,增大合金电沉积的阴极极化,同时镀层的耐蚀性较Zn-Fe合金镀层提高了约1倍.","authors":[{"authorName":"陈阵","id":"f7fbc91a-764b-4e1c-aa0d-4d98a0837f0a","originalAuthorName":"陈阵"},{"authorName":"张英杰","id":"32af4608-b094-4a02-afed-850913146221","originalAuthorName":"张英杰"}],"doi":"","fpage":"34","id":"dfd2f283-2ae5-41a9-b5a8-a204eb58995b","issue":"12","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"ac0c66e8-1717-4b4e-bb7e-37659fd3bcfc","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"bea1767f-92dd-4331-8df0-cee5d9816c32","keyword":"Zn-Fe-La","originalKeyword":"Zn-Fe-La"},{"id":"6411de6e-306b-43ea-8dc4-0fd056fd77e5","keyword":"稀土","originalKeyword":"稀土"},{"id":"ae273b00-0660-412c-a783-ec5ca38bef16","keyword":"三元合金","originalKeyword":"三元合金"},{"id":"a2dd7170-1198-4fa9-83c1-5845cee7612a","keyword":"阴极极化","originalKeyword":"阴极极化"},{"id":"e3721a9f-7961-4abc-9ff3-11b12f892741","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"clbh200812011","title":"Zn-Fe-La三元合金电沉积工艺研究","volume":"41","year":"2008"},{"abstractinfo":"为了获得更加光亮、致密的Zn-Fe-La三元合金镀层,针对电沉积Zn-Fe-La三元合金镀液组成及工艺条件,系统地研究了稀土对镀层成分含量、镀液稳定性、镀液分散能力以及pH值的影响,测定了镀层的极化曲线、稳定电位和极化电阻,比较了不同稀土含量对镀层耐蚀性的影响.结果表明:稀土的加入可提高镀液稳定性、分散能力,增加电沉积过程阴极极化,使阳极钝化前的活性区腐蚀电位正移,自溶解速度下降,有利于提高镀层耐蚀性,其耐蚀性比Zn-Fe合金镀层及纯Zn镀层有很大提高.","authors":[{"authorName":"陈阵","id":"4e2f572b-4842-42ff-b61b-cfc1e690efe8","originalAuthorName":"陈阵"},{"authorName":"张英杰","id":"f7b442d3-d783-49c2-a974-1d86fdb389b7","originalAuthorName":"张英杰"}],"doi":"10.3969/j.issn.1001-3660.2009.01.001","fpage":"1","id":"02c7b2fa-81e8-4006-bdc7-9b3b6ac0e091","issue":"1","journal":{"abbrevTitle":"BMJS","coverImgSrc":"journal/img/cover/BMJS.jpg","id":"3","issnPpub":"1001-3660","publisherId":"BMJS","title":"表面技术 "},"keywords":[{"id":"d23ed441-9dbe-4b38-b63e-49bed87e8a27","keyword":"电沉积","originalKeyword":"电沉积"},{"id":"be6b763e-d26d-49cb-acbb-a295df9e475f","keyword":"稀土","originalKeyword":"稀土"},{"id":"76b581ea-0214-4a78-b7a6-6cdc66329b43","keyword":"三元合金","originalKeyword":"三元合金"},{"id":"9ff5e817-48f2-417f-965c-3df0421142db","keyword":"阴极极化","originalKeyword":"阴极极化"},{"id":"563d8d46-cf88-41f9-979c-797455d429c3","keyword":"耐蚀性","originalKeyword":"耐蚀性"}],"language":"zh","publisherId":"bmjs200901001","title":"稀土对电沉积Zn-Fe-La三元合金性能影响的研究","volume":"38","year":"2009"},{"abstractinfo":"收集并计算了Mo-Si-C三元系在1 600℃下各组元化合物的热力学数据. 利用Mo-Si-C三元系在该温度下的平衡相图以及收集计算的该三元系的热力学数据, 计算了该三元系中各组元的化学势并作出了相应的化学势稳定性相图.","authors":[{"authorName":"甘国友","id":"3da9cbdc-a638-49a6-8467-6798bb4042aa","originalAuthorName":"甘国友"},{"authorName":"孙加林","id":"e7db8401-ea41-4f39-a8eb-e3d1d70ce361","originalAuthorName":"孙加林"},{"authorName":"陈敬超","id":"689aab69-5a9e-4bb6-bdf1-79e3d9390185","originalAuthorName":"陈敬超"},{"authorName":"陈永羽","id":"9701e739-f513-4bcc-92ed-5b6f81a5ce17","originalAuthorName":"陈永羽"},{"authorName":"严继康","id":"1b3e7909-7b1a-41c7-bbab-efe86a558f4f","originalAuthorName":"严继康"}],"doi":"","fpage":"346","id":"9ff26c4f-16de-4d4e-a8aa-306b1672ec1f","issue":"5","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"20452ba0-dcd9-47a9-93ce-16f6a87b6456","keyword":"Mo-Si-C三元系","originalKeyword":"Mo-Si-C三元系"},{"id":"ddd47d45-9f95-4471-ad2f-a0bcc58eb7ce","keyword":"平衡相图","originalKeyword":"平衡相图"},{"id":"78968fc5-5a86-405a-949f-91e7c4a91aaa","keyword":"化学势","originalKeyword":"化学势"},{"id":"dba3c574-d968-4be0-8ecf-58397306668b","keyword":"化学势稳定性相图","originalKeyword":"化学势稳定性相图"}],"language":"zh","publisherId":"xyjsclygc200105007","title":"1 600℃ Mo-Si-C三元系组元化学势稳定性相图","volume":"30","year":"2001"},{"abstractinfo":"采用高温助熔剂法首次成功生长出了Pb(Yb1/2Nb1/2) O3-Pb(Zn1/3Nb2/3) O3-PbTiO3 (PYZNT)三元铁电单晶,并对晶体组分、介电、铁电和压电性能进行了研究.结果表明,晶体为纯三方钙钛矿相,实际组分为0.68PYN-0.22PZN-0.1PT.分别对晶体的介电,铁电和压电性能进行研究.介电常数ε'和介电损耗tanδ对温度和频率表现出典型的弛豫行为.晶体的居里温度TC为80℃.由于反铁电体PYN含量较高,晶体具有非常大的矫顽场,在100kV/cm的外电场条件下极化还不能反转,因而无法得到饱和的电滞回线.在未极化条件下,测得晶体的压电常数d33为78 pC/N.","authors":[{"authorName":"林啟维","id":"69e296dd-56e4-4c81-9861-54f531a60dca","originalAuthorName":"林啟维"},{"authorName":"何超","id":"b5666651-8c5f-48a2-8ca9-f913af824d7c","originalAuthorName":"何超"},{"authorName":"龙西法","id":"fedf1f78-0561-4056-96cc-e299b374c7f2","originalAuthorName":"龙西法"}],"doi":"","fpage":"2046","id":"7e9f8881-19c9-43af-808c-1a0b3b77f01c","issue":"8","journal":{"abbrevTitle":"RGJTXB","coverImgSrc":"journal/img/cover/RGJTXB.jpg","id":"57","issnPpub":"1000-985X","publisherId":"RGJTXB","title":"人工晶体学报"},"keywords":[{"id":"f2076e60-e536-4f1f-95f4-aedf3b52ff84","keyword":"PYZNT","originalKeyword":"PYZNT"},{"id":"770a89ef-2d43-4ae6-bb98-60ca10a6137d","keyword":"助熔剂法","originalKeyword":"助熔剂法"},{"id":"3acba73a-e48e-40c2-9a35-d769b264dcc7","keyword":"介电性","originalKeyword":"介电性"},{"id":"93ba7fb1-866c-4f42-9ffe-46a50317b728","keyword":"铁电性","originalKeyword":"铁电性"},{"id":"8f85351e-5a16-4576-a1d9-e768b7c8bd5d","keyword":"压电性","originalKeyword":"压电性"}],"language":"zh","publisherId":"rgjtxb98201508005","title":"三元铁电单晶Pb(Yb1/2Nb1/2)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3生长及性能表征","volume":"44","year":"2015"},{"abstractinfo":"采用固相反应方法制备名义组成为Cd1-xZnxS三元系半导体颜料.利用X光衍射表征体系的结构,结果表明,最终实验产物均为纤锌矿结构.测试样品的红外吸收光谱以及3~5 μm和8-14 μm双波段红外发射率,研究Cd/Zn配比对光谱特性的影响,探讨发射率随波长、配比及温度的变化而改变的机理.","authors":[{"authorName":"顾冰芳","id":"26fa8f6f-91c3-4f2c-bbfa-4f77e4306639","originalAuthorName":"顾冰芳"},{"authorName":"徐国跃","id":"e951a9bc-da9c-4c13-bc79-b2675d9f2e8f","originalAuthorName":"徐国跃"},{"authorName":"任菁","id":"3e37b666-a644-4b60-b5ff-7b66575700d1","originalAuthorName":"任菁"},{"authorName":"罗艳","id":"79601604-e1eb-4b6a-aba6-525356ad9a02","originalAuthorName":"罗艳"},{"authorName":"蔡刚","id":"a091588e-b049-4876-ae15-3a11788e3371","originalAuthorName":"蔡刚"}],"doi":"10.3969/j.issn.1004-244X.2007.05.011","fpage":"40","id":"eddeba23-691e-4bec-a28b-70796f6fb4a4","issue":"5","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"44a3637d-aefb-457d-8896-334bbbf0bd3a","keyword":"Cd1-xZnxS","originalKeyword":"Cd1-xZnxS"},{"id":"4615651e-0fe1-4780-a2b1-d6029b54b16d","keyword":"混晶","originalKeyword":"混晶"},{"id":"be1c1a88-fde6-4aab-8539-fdc8713707ad","keyword":"晶格振动","originalKeyword":"晶格振动"},{"id":"f1a41afc-bc3c-4e7f-ab0f-d161ec0ff315","keyword":"红外光谱","originalKeyword":"红外光谱"},{"id":"fa8844a6-93bd-4816-b264-8e4138457b8c","keyword":"发射率","originalKeyword":"发射率"}],"language":"zh","publisherId":"bqclkxygc200705011","title":"Cd1-xZnxS三元系颜料红外性能研究","volume":"30","year":"2007"},{"abstractinfo":"研究了镀液配方对化学镀Ni-Zn-P三元合金施镀效果的影响,探明了镀速、镀层硬度及其腐蚀防护性,以及镀层Ni,Zn和P含量的变化规律,确定了含Zn 9.50~16.57和P 7.55~13.59(质量分数,%)的Ni-Zn-P镀层制备工艺.对典型试样进行了SEM和XRD分析以及耐酸、耐碱及耐盐溶液腐蚀性能测试,结果表明:镀层表面平整、均匀,结构致密,具有典型的胞状/球状及条带状微观形貌;镀层主要由非晶、微晶或其混合相组成,其中Zn和P固溶于fcc的Ni晶格中;镀层耐盐、耐碱腐蚀能力较强.","authors":[{"authorName":"张永君","id":"277246c0-7cf1-46e5-bbf0-2ee02cda44ba","originalAuthorName":"张永君"},{"authorName":"赵翠玲","id":"2756f7f1-8eeb-4c6b-afec-792e9af9cb4f","originalAuthorName":"赵翠玲"},{"authorName":"李茂东","id":"79d9848d-6553-483b-a2eb-98613ea07754","originalAuthorName":"李茂东"},{"authorName":"马括","id":"ba878e5a-b1a0-4afd-8a93-8aff48952b09","originalAuthorName":"马括"},{"authorName":"王磊","id":"7551f109-ddad-4ad8-ae5d-1790fb0b7078","originalAuthorName":"王磊"},{"authorName":"倪进飞","id":"fb445e05-6c69-4f06-bf62-e20efb7f0a93","originalAuthorName":"倪进飞"},{"authorName":"夏兰梅","id":"01a504a3-7c0f-4d7b-849a-b42874e33c41","originalAuthorName":"夏兰梅"}],"doi":"10.11903/1002.6495.2015.196","fpage":"206","id":"1f2a8312-a6cc-4721-8750-7f0f27e18995","issue":"3","journal":{"abbrevTitle":"FSXB","coverImgSrc":"journal/img/cover/腐蚀学报封面.jpg","id":"24","issnPpub":"2667-2669","publisherId":"FSXB","title":"腐蚀学报(英文)"},"keywords":[{"id":"5c437d5a-1e06-4479-b803-76a9715792d7","keyword":"化学镀","originalKeyword":"化学镀"},{"id":"1d6ac127-f496-465c-8f65-da2cc5828ed6","keyword":"Ni-Zn-P合金","originalKeyword":"Ni-Zn-P合金"},{"id":"cf7008dd-3b86-489a-a164-37aab41cc272","keyword":"镀液配方","originalKeyword":"镀液配方"},{"id":"e899f8b8-ebdf-4c2b-80be-6776cf2cf2ce","keyword":"镀速","originalKeyword":"镀速"}],"language":"zh","publisherId":"fskxyfhjs201603003","title":"Ni-Zn-P三元合金化学镀镀液配方优化研究","volume":"28","year":"2016"}],"totalpage":7401,"totalrecord":74008}