Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
LIU Guoquan Department of Materials Science and Engineering
,
University of Science and Technology Beijing
,
100083
,
China.
材料科学技术(英文)
Quantitative analysis of populations having a geometric structure,which has developed into a special scientific subject called microstructology or stereology,is of great importance to the characterization and evaluation of microstructures and their evolution in various processes.This paper, besides a brief discussion on those topics such as the recent developments of computer assisted image analysis,mathematical morphology,and fractal analysis,will mainly focus on the scope,fundamen- tals,present status,and perspectives of classical stereology.Several case examples of its application to materials science will also be given.
关键词:
stereology
,
null
,
null
,
null
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.
关键词:
bamboo;bast fiber;biomimetics;engineering composites
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior
Shaoxiong ZHOU
材料科学技术(英文)
The discovery of the first Fe-based ferromagnetic amorphous alloy in 1966 had made an impact on conventional magnetic materials because of its unique properties. Since then, a number of amorphous magnetic materials have been successfully developed and used in a wide variety of applications. A brief review of R & D activities on amorphous soft magnetic materials in China is given from the beginning to the present in a somewhat chronological order, followed by a brief introduction to their applications on electric and electronic industries. An analysis and a prospect of Chinese market of such amorphous materials are also presented.
关键词:
K.Yagi
金属学报(英文版)
A Materials Risk Information Platform is being developed under the cooperation of companies and academic societies with NIMS as project core. To combine safety and economy, which are sometimes contrary to each other, it is important to find an optimal solution using a new concept: risk based engineering. A 5-year project, the Materials Risk Information Platform, was started in 2001 in NIMS on the boilers of thermal power plants and the objectives of this project, research areas and its present state were outlined.
关键词:
risk
,
null
,
null
Douxing LI and Hengqiang YE (Laboratory of Atomic imaging of Solids
,
Institute of Metal Research
,
Chinese Academy of Sciences
,
Shenyang
,
110015
,
China)
材料科学技术(英文)
The present paper summarizes the current status of high resolution electron microscopy (HREM)and the applications of HREM to materials science and condensed matter physics. This review recounts the latest development of high resolution electron microscope, progress of HREM and the applications of HREM, including the crystal structure determination of microcrystalline materials and characterization of the local structure of the defects and nanostructured materials as well as qualitative and quantitative analysis of the grain boundaries, interfaces and interfacial reactions in the advanced materials by means of HREM in combination with electron diffraction,subnanometer level analysis, image simulation and image processing.
关键词:
彭宁琦
,
唐广波
,
刘正东
,
吴秀月
金属学报
doi:10.3321/j.issn:0412-1961.2009.03.013
根据Aaronson提出的超组元模型,借助Ae3的实验数据,提出了修正的置换型元素Xi(Xi=Si,Mn,Ni,Co,Mo,Al,Cu,Cr)的Zener两参数,修正中考虑了合金元素间的交互作用.修正后的超组元模型的预测精度明显改善:Ae3计算值与实验值的标准差为10.8℃,与Thermo-Calc计算值的标准差为2.35℃;Ae1计算值与实验值的标准差为6.8℃.按照马氏体相变热力学的计算方法,采用经修正的参数计算了马氏体相变开始温度Ms,提高了Ms点的预测精度,计算值与实验值的标准差为25.3℃.
关键词:
相变
,
热力学
,
超组元模型
,
相变平衡温度