GAO Hongbin
,
Harbin Shipbuilding Engineering Institute Harbin
,
China GAO Hongbin
,
Associate Professor
,
Harbin Shipbuilding Engineering Institute
,
Harbin 150001
,
China
金属学报(英文版)
The corrosion fatigue crack growth and near-threshold characteristics of a medium strength steel HT60 were investigated using compact tension specimens exposed to synthetic sea water. The da/dN-△AK_(eff) relation in air can give a conservative estimation of da/dN-△K relations in sea water. In the case of high R, however, crack growth acceleration at high △K regions appears to be cantrolled by the stress-assisted dissolution. The crack opening stress inlensity factor K_(op) detected by the back-face-strain method is the result of crack surface in contact with the corrosion products and therefore an overestimated value of K_(op) at the crack tip is given.
关键词:
corrosion fatigue
,
null
,
null
,
null
WU Chuansong
,
CAO Zhenning
,
WU Lin Harbin Institute of Technology
,
Harbin
,
China
金属学报(英文版)
A model is established to analyze three-dimensional fluid flow and heat transfer in TICweld pools with full penetration.It considers the deformation of the molten pool surfaceat the condition of full penetrated workpieees,takes the are pressure as the drivingforce of the pool surface deformation,and determines the surface configuration of weldpool based on the dynamic balance of arc pressure,pool gravity and surface tension atdeformed weld pool surface. The SIMPLER algorithm is used to calculate the fluid flowfield and temperature distribution in TIG weld pools of stainless steel workpieces.TIGwelding experiments are made to verify the validity of the model.It shows the calculatedresults by the model are in good agreement with experimental measurements. professor,Dept of Welding Engineering,Harbin Institute of Technology,Harbin 150006,China
关键词:
KEY WORDS TIG weld pool
,
null
,
null
,
null
,
null
Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.
关键词:
bamboo;bast fiber;biomimetics;engineering composites
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior
Biomedical Materials
In this work, porous magnesium (Mg) with a three-dimensional open-cellular structure, potentially employed as bone tissue engineering scaffolds, was fabricated by the mechanical perforation method. The influences of porosity, pore size and pore arrangement on compressive behavior and the anisotropy of new porous Mg were analyzed theoretically using orthogonal arrays and the finite element method (FEM). The results showed that the parameters of porosity, pore size and pore arrangement had different effects on the compressive properties. The compressive strength could be improved by optimizing these parameters. The anisotropy of porous Mg was also verified in this study. The theoretical results showed good agreement with the experimental ones before the strain reaches 0.038.
关键词:
unidirectional solidification;pore-size;hydroxyapatite;replacement;cartilage;porosity;matrix
Weizhong JIN
,
Sen YANG
,
Hiroyuki KOKAWA
,
Zhanjie WANG
,
Yutaka S.Sato
材料科学技术(英文)
Intergranular stress corrosion crack susceptibility of austenite stainless steel was evaluated through threepoint bending test conducted in high temperature water. The experimental results showed that the frequent and efficient introduction of low energy coincidence site lattice boundaries through grain boundary engineering resulted in an apparent improvement of the intergranular stress corrosion crack resistance of austenite stainless steel.
关键词:
Intergranular stress corrosion cracking
,
null
,
null