{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用插销试验测试了不同情况下30CrMnSiNi2A钢焊接熔合区的临界断裂应力,分析了插销焊接接头的组织和插销试样的断口形貌.结果表明:30CrMnSiNi2A钢插销焊接接头上冷裂纹最敏感的区域是熔合区,其断口形貌为沿晶+准解理;熔合区晶粒粗大,组织为马氏体+贝氏体+残余奥氏体;HTJ-3焊条扩散氢含量大于HTG-1焊条,前者临界断裂应力小于后者;缺口影响插销焊接接头的应力分布.","authors":[{"authorName":"牛靖","id":"0321f588-d9f2-46b2-a833-db0f123a3fb3","originalAuthorName":"牛靖"},{"authorName":"董俊明","id":"ee0df725-7f6b-457b-94f7-c37bf9edb512","originalAuthorName":"董俊明"},{"authorName":"董卫鹏","id":"3deb3360-1c78-4489-82ff-3e16b0a8e2b3","originalAuthorName":"董卫鹏"},{"authorName":"何源","id":"3eea6f24-a72b-42f8-9f85-2962ca5f9966","originalAuthorName":"何源"},{"authorName":"薛锦","id":"c97e1ddb-ad81-4292-a217-bca295e22da4","originalAuthorName":"薛锦"}],"doi":"10.3969/j.issn.1000-3738.2006.07.007","fpage":"22","id":"a3478884-c9c6-4da8-a951-b094b98bd8a9","issue":"7","journal":{"abbrevTitle":"JXGCCL","coverImgSrc":"journal/img/cover/JXGCCL.jpg","id":"45","issnPpub":"1000-3738","publisherId":"JXGCCL","title":"机械工程材料"},"keywords":[{"id":"f94f618f-b57c-4c3d-bbfd-56a676269dc5","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"e0c7dbcf-efb6-4f69-b73d-b00fa71d8696","keyword":"插销试验","originalKeyword":"插销试验"},{"id":"7c52b1f1-20d5-44b7-b9a9-4ffad1fb91ce","keyword":"熔合区","originalKeyword":"熔合区"},{"id":"f6900d6f-926d-4c82-ad0b-42787bfc078c","keyword":"显微组织","originalKeyword":"显微组织"}],"language":"zh","publisherId":"jxgccl200607007","title":"30CrMnSiNi2A钢焊接冷裂纹的敏感性","volume":"30","year":"2006"},{"abstractinfo":"选用30CrMnSiNi2A钢的3组试样:正火处理,硬度为19(标号1)、860℃淬火200℃回火,硬度为49(标号2)、860℃淬火600℃回火,硬度为34(标号3),在电子万能材料实验机和SHPB动态测试装置上进行不同应变率下的静态压缩和动态冲击实验.结果显示,30CrMnSiNi2A钢屈服强度具有一定的应变率敏感性.根据静态、动态实验结果,结合Perzyna公式,得到3组试样钢屈服强度与应变率之间的关系式.进一步利用实验结果,结合Johnson-Cook模型拟合出3组试样钢的本构方程,通过拟合方程得到的应力一应变曲线与实验所得应力-应变曲线非常吻合,表明该方程能较好描述试样的本构关系.","authors":[{"authorName":"周义清","id":"afb58c2f-add5-4794-8260-a711c9657b85","originalAuthorName":"周义清"},{"authorName":"张治民","id":"0e4509a9-729f-43b0-b782-caa54c967833","originalAuthorName":"张治民"}],"doi":"10.3969/j.issn.1004-244X.2010.04.013","fpage":"46","id":"fd44560e-caf3-4947-8f9e-7359dfd56dc9","issue":"4","journal":{"abbrevTitle":"BQCLKXYGC","coverImgSrc":"journal/img/cover/BQCLKXYGC.jpg","id":"4","issnPpub":"1004-244X","publisherId":"BQCLKXYGC","title":"兵器材料科学与工程 "},"keywords":[{"id":"9eb438ca-1ac6-487b-b422-584a56827eb1","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"578bdaf4-9bcb-4c77-839f-d723db15efce","keyword":"SHPB","originalKeyword":"SHPB"},{"id":"ed0dbac9-8fad-4295-b1b6-0e165e230c63","keyword":"屈服强度","originalKeyword":"屈服强度"},{"id":"fcf514d5-d10a-4412-a71d-33472a876b10","keyword":"本构关系","originalKeyword":"本构关系"},{"id":"c47517ca-9ee7-4912-8ce2-83d5e3b745c1","keyword":"应变率效应","originalKeyword":"应变率效应"}],"language":"zh","publisherId":"bqclkxygc201004013","title":"30CrMnSiNi2A钢在不同应变率下的力学性能研究","volume":"33","year":"2010"},{"abstractinfo":"研究了化学成分对30CrMnSiNi2A钢力学性能的影响.试验结果表明:随着碳含量的增加,该钢的强度提高、塑性和韧性降低;钢中硅含量的增加使钢的强度有所提高,塑性略有降低,韧性未降低;钢中锰含量的增加使钢的强度略有下降,但对韧性没有损害;加入一定量的钼对钢的强度和塑性影响不大,但改善了钢的韧性.","authors":[{"authorName":"花峰","id":"68953859-04e0-4042-9569-1e020067e33a","originalAuthorName":"花峰"},{"authorName":"刘宪民","id":"47cd8f91-568c-4499-aa66-03a225a10e1e","originalAuthorName":"刘宪民"},{"authorName":"王春旭","id":"4faf7b20-56bc-4974-8336-1e3024f7e55d","originalAuthorName":"王春旭"}],"doi":"","fpage":"25","id":"68ab3269-9e4f-48f3-8ed5-f04d494e5ca4","issue":"3","journal":{"abbrevTitle":"GTYJXB","coverImgSrc":"journal/img/cover/GTYJXB.jpg","id":"30","issnPpub":"1001-0963","publisherId":"GTYJXB","title":"钢铁研究学报"},"keywords":[{"id":"ee56cdae-0b37-4478-aee1-415d2b3380c4","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"40466682-b3b2-499c-b033-5ffeaccafe65","keyword":"化学成分","originalKeyword":"化学成分"},{"id":"ce9cc925-0939-407b-8457-bfd945f6968e","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"eb1f6d38-36ac-48de-b01f-9fb03aacb3e1","keyword":"微观组织","originalKeyword":"微观组织"}],"language":"zh","publisherId":"gtyjxb200303007","title":"化学成分对30CrMnSiNi2A钢力学性能的影响","volume":"15","year":"2003"},{"abstractinfo":"通过对30CrMnSiNi2A电渣钢低倍点偏缺陷部位取样进行高低倍观察及能谱分析,结果表明,点偏位置富集碳、氧元素,认为点状偏析产生过程是由于电渣熔炼过程中,气体在金属熔池缓慢上浮.随着结晶过程的进行,钢中气体过饱和析出,因钢液黏稠而未能及时上浮,引起偏析元素局部积聚,形成点状偏析.最终找到解决该钢点偏形成的较为理想的电渣控制方式.","authors":[{"authorName":"赵成志","id":"46f6bafd-036f-42b4-8eb3-12531cce9561","originalAuthorName":"赵成志"},{"authorName":"王海江","id":"03caa5dc-a961-4723-87a0-d5f15ba52249","originalAuthorName":"王海江"},{"authorName":"庞学东","id":"d92ef5cb-1431-429a-8453-4a60c6492d81","originalAuthorName":"庞学东"},{"authorName":"孙勇","id":"24d3fe1c-98c2-46cc-a485-6472734f7e80","originalAuthorName":"孙勇"}],"doi":"","fpage":"11","id":"d2eb9add-3cb5-40a7-9e8b-1e1cd8f8c0e6","issue":"2","journal":{"abbrevTitle":"WLCS","coverImgSrc":"journal/img/cover/WLCS.jpg","id":"64","issnPpub":"1001-0777","publisherId":"WLCS","title":"物理测试"},"keywords":[{"id":"884ae87a-4e9c-4b8d-a9b2-be64f984a835","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"12e129d1-1534-44c8-bd1d-26b637d4b6f4","keyword":"点状偏析","originalKeyword":"点状偏析"},{"id":"265d02ee-4311-4126-bdd2-399627403e3e","keyword":"低倍","originalKeyword":"低倍"},{"id":"501ed76a-ccc6-415e-a4e5-2c3ca046bfe6","keyword":"高倍","originalKeyword":"高倍"}],"language":"zh","publisherId":"wlcs201302003","title":"30CrMnSiNi2A钢电渣点偏形成过程及控制方式探讨","volume":"31","year":"2013"},{"abstractinfo":"对退火状态超高强钢30CrMnSiNi2A进行了大量的插销试验,结果表明:不同缺口位置的插销试样均断裂于熔合区,熔合区是对冷裂纹最敏感的区域;250℃以上预热能明显改善冷裂纹敏感性;同时发现采用光滑插销试样评估超高强钢抗冷裂纹能力是可行的.","authors":[{"authorName":"牛靖","id":"40a1568a-defa-4a34-9ac3-d55ca2489cfc","originalAuthorName":"牛靖"},{"authorName":"董俊明","id":"630b0494-b40f-45b0-b5e0-14edb3957dbf","originalAuthorName":"董俊明"},{"authorName":"何源","id":"5e1c8b32-4bf4-442d-8c8d-6c2261942a9d","originalAuthorName":"何源"},{"authorName":"董卫鹏","id":"49576b6f-c2d7-4b1e-b6c5-80aefa07f472","originalAuthorName":"董卫鹏"},{"authorName":"薛锦","id":"d608fd6f-1887-4452-b2fe-590c255e0774","originalAuthorName":"薛锦"}],"doi":"10.3969/j.issn.1003-1545.2006.04.001","fpage":"1","id":"789e3442-3507-4b3f-962e-878da95930d0","issue":"4","journal":{"abbrevTitle":"CLKFYYY","coverImgSrc":"journal/img/cover/CLKFYYY.jpg","id":"10","issnPpub":"1003-1545","publisherId":"CLKFYYY","title":"材料开发与应用"},"keywords":[{"id":"8275d7c7-0bbc-4774-9099-f27f1484e2b5","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"46bff315-a78a-4af0-baf3-82ff5e887cad","keyword":"插销试验","originalKeyword":"插销试验"},{"id":"9d25d1e0-9a92-4d8f-95c9-2b56c9a08da7","keyword":"冷裂纹","originalKeyword":"冷裂纹"}],"language":"zh","publisherId":"clkfyyy200604001","title":"30CrMnSiNi2A钢冷裂纹敏感性研究","volume":"21","year":"2006"},{"abstractinfo":"研究了热处理对30CrMnSiNi2A钢性能的影响.试验结果表明:该钢的最佳热处理制度为890 ℃或900 ℃保温20~45 min油冷,然后260~300 ℃回火2.5 h.经该热处理制度处理的钢具有较好的强度和韧性配合.在350~550 ℃温度区间回火时,该钢出现了明显的回火脆性.冲击韧性的降低是片状渗碳体的析出造成的.600 ℃以上回火时马氏体边界的渗碳体开始聚集和球化,钢的韧性和塑性提高.","authors":[{"authorName":"刘宪民","id":"93cfd925-53bb-4fc8-a471-5da7442b6521","originalAuthorName":"刘宪民"},{"authorName":"花峰","id":"41842159-f8a8-4fd7-9f90-4edaa26c274c","originalAuthorName":"花峰"},{"authorName":"刘蕤","id":"0d36ddf8-8c8f-473c-ac74-137a759f48af","originalAuthorName":"刘蕤"},{"authorName":"郝锡秀","id":"c820f8aa-4af3-451c-98ed-d1d6c6516a96","originalAuthorName":"郝锡秀"}],"doi":"","fpage":"43","id":"38acfc7e-9bff-4109-ba4a-3a051bc01919","issue":"1","journal":{"abbrevTitle":"GT","coverImgSrc":"journal/img/cover/GT.jpg","id":"27","issnPpub":"0449-749X","publisherId":"GT","title":"钢铁"},"keywords":[{"id":"2430e0aa-0fa4-41d5-88ab-c44a85b482c7","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"ffa10558-1933-4597-8b24-216a471e1c27","keyword":"热处理","originalKeyword":"热处理"},{"id":"e4893ea3-abd6-4744-add1-9d025602febb","keyword":"力学性能","originalKeyword":"力学性能"}],"language":"zh","publisherId":"gt200301013","title":"热处理对30CrMnSiNi2A钢力学性能的影响","volume":"38","year":"2003"},{"abstractinfo":"在分析30CrMnSiNi2A和GC4力学性能的基础上,在相同裂纹长度条件下,对两种材料的裂纹扩展寿命和裂纹扩展速率的统计特性进行了统计研究.经比较分析后认为,由于30CrMnSiNi2A钢的裂纹扩展速率较慢,故裂纹扩展寿命较长,但由于其分散性较大,在裂纹长度较大时,99.9%的安全寿命尽管仍比GC4钢大,但两者已很接近.","authors":[{"authorName":"徐人平","id":"39cc9d84-6100-4504-8408-0d7abbdca88c","originalAuthorName":"徐人平"},{"authorName":"李淑兰","id":"bf4f9afd-c1d5-4e52-8be5-33e4da3af9a7","originalAuthorName":"李淑兰"}],"doi":"10.3969/j.issn.1005-5053.2004.06.002","fpage":"7","id":"224be123-b805-41c6-9827-f59dcce5e683","issue":"6","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"9ca16a8f-35bc-4ad8-b53f-b32a298b61fd","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"fadb1b0d-f569-4314-96cf-8e2915b08643","keyword":"GC4","originalKeyword":"GC4"},{"id":"a4b41d8a-818f-445c-8d54-20d04b73125a","keyword":"统计分析","originalKeyword":"统计分析"},{"id":"5b387f75-937f-4d4a-a229-1584c8b1e7ec","keyword":"裂纹扩展寿命","originalKeyword":"裂纹扩展寿命"},{"id":"e71dd743-4644-4291-99d2-88300a0abb79","keyword":"裂纹扩展速率","originalKeyword":"裂纹扩展速率"}],"language":"zh","publisherId":"hkclxb200406002","title":"30CrMnSiNi2A和GC4(40CrMnSiMoVA)钢裂纹扩展性能比较分析研究","volume":"24","year":"2004"},{"abstractinfo":"使用气动式喷丸设备制备了30CrMnSiNi2A合金钢喷丸强化处理试样,并对试样表层的组织性能进行了综合分析.采用扫描电镜和透射电镜观察了试样表层的显微组织结构,利用纳米压痕仪和X射线应力仪测试了喷丸处理和未处理试样表层纳米显微硬度和残余应力沿厚度方向的分布.结果表明:未处理试样的组织主要为板条马氏体、少量的下贝氏体、孪晶及残余奥氏体,喷丸处理在试样表面形成了厚度约为30 μm的致密塑性变形层,该层内晶粒平均直径约为46 nm,纳米显微硬度值达到6.8 GPa,加工硬化量提高了4.9%;同时,喷丸处理在试样表面引入了深度约为280μm的残余压应力层,最大值为-1050 MPa.最后,分析了喷丸处理晶粒细化机制及其对材料加工硬化和残余应力的影响.","authors":[{"authorName":"李占明","id":"0b23af40-07a5-43f5-834e-5d1ad07e6f3f","originalAuthorName":"李占明"},{"authorName":"朱有利","id":"22d3a332-5d34-4e64-af66-2a901c20f36b","originalAuthorName":"朱有利"},{"authorName":"谢俊峰","id":"35429e20-907c-49fb-b5bf-77323944ce94","originalAuthorName":"谢俊峰"},{"authorName":"杜晓坤","id":"0f3493fd-bc9e-45fb-9b88-a7681bfcbf51","originalAuthorName":"杜晓坤"},{"authorName":"陈海峰","id":"60dbfede-8ee4-4b3d-8068-ef29dd1c4c22","originalAuthorName":"陈海峰"},{"authorName":"潘洪海","id":"144f5a41-cfe4-4d55-94e5-7c325be24bd9","originalAuthorName":"潘洪海"}],"doi":"10.3969/j.issn.1005-5053.2013.3.006","fpage":"30","id":"ff4bb48c-94de-47c5-9a45-c44a9ca1fdfe","issue":"3","journal":{"abbrevTitle":"HKCLXB","coverImgSrc":"journal/img/cover/HKCLXB.jpg","id":"41","issnPpub":"1005-5053","publisherId":"HKCLXB","title":"航空材料学报"},"keywords":[{"id":"92b3e606-c3e4-4fc4-a4fb-0b26f46d3397","keyword":"喷丸","originalKeyword":"喷丸"},{"id":"20e8a3a2-14de-457f-9642-17f65e50df56","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"84561379-ba9e-4ee1-867b-d665d78862fc","keyword":"组织性能","originalKeyword":"组织性能"},{"id":"43d62c6b-bd8e-4043-b0db-1484240d8cb7","keyword":"微观机理","originalKeyword":"微观机理"}],"language":"zh","publisherId":"hkclxb201303006","title":"喷丸对30CrMnSiNi2A合金钢表层组织性能的影响及其微观机理","volume":"33","year":"2013"},{"abstractinfo":"针对30CrMnSiNi2A材料表面多弧离子镀氮化钛薄膜后,材料力学性能出现波动的问题,研究了镀膜温度对材料力学性能的影响规律,优化了镀膜温度控制范围.结果表明,控制镀膜θ为200℃可保证制备得到的氮化钛薄膜的纵向冲击力不低于47J,当镀膜θ高于260℃后,温度进入二次回火区间,材料脆性会上升.","authors":[{"authorName":"陈伟","id":"5b10b7c0-d027-47f6-9e29-659489a41cc8","originalAuthorName":"陈伟"},{"authorName":"佟玮","id":"29bfabcd-2ed2-4e9d-bfc6-159bd2593fad","originalAuthorName":"佟玮"},{"authorName":"淡婷","id":"4fc29180-8057-4474-9515-a4b5283be9af","originalAuthorName":"淡婷"},{"authorName":"邹松华","id":"c26c2ca8-9613-4a50-9e26-7e19b4b5d09e","originalAuthorName":"邹松华"},{"authorName":"郭小红","id":"6335c1dc-2b6f-4991-93f7-71d57778a007","originalAuthorName":"郭小红"},{"authorName":"耿亚辉","id":"44dcd410-ca63-4392-bedb-a3146b0ad1f4","originalAuthorName":"耿亚辉"},{"authorName":"陈岱松","id":"4c275792-db5d-4165-9473-008b8bf27119","originalAuthorName":"陈岱松"}],"doi":"10.3969/j.issn.1001-3849.2017.06.002","fpage":"5","id":"53369972-d139-4335-871c-4e58b73ef92d","issue":"6","journal":{"abbrevTitle":"DDYJS","coverImgSrc":"journal/img/cover/DDYJS.jpg","id":"20","issnPpub":"1001-3849","publisherId":"DDYJS","title":"电镀与精饰 "},"keywords":[{"id":"896487db-6141-4133-91e1-92479d6dad8d","keyword":"氮化钛","originalKeyword":"氮化钛"},{"id":"83c7bff5-b24e-4d3a-8ba0-bacd47dfb562","keyword":"温度","originalKeyword":"温度"},{"id":"f89b0755-fb45-44d6-9819-76bb9b151215","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"c5f7cfa2-44ea-42c3-85f0-e269eb53fb6f","keyword":"二次回火","originalKeyword":"二次回火"}],"language":"zh","publisherId":"ddjs201706002","title":"镀膜温度对30CrMnSiNi2A表面多弧离子镀氮化钛薄膜力学性能的影响","volume":"39","year":"2017"},{"abstractinfo":"分离装置静力试验后发现连接两个舱体的双头螺栓中有7件发生断裂,螺栓表面进行了达克罗处理.通过失效分析及相关试验综合分析认为,分离装置上7件螺栓的断裂性质均为延迟性脆性断裂,断裂机理为氢脆.导致发生氢脆断裂的原因除螺栓材料及组织具有较高的氢脆敏感性外,主要与静力试验过程中长时间包覆湿泥有关;另外,原材料氢含量控制及达克罗涂层工艺处理虽然有效避免了产品表面处理过程中带来的氢脆隐患,但是若使用环境中存在水及腐蚀性介质Cl、S时,产品在拉应力作用下仍可能发生氢脆延迟断裂而导致严重后果.","authors":[{"authorName":"韩露","id":"cfdc5b32-1124-4876-a92f-5ac6bb5a3f4b","originalAuthorName":"韩露"},{"authorName":"刘春立","id":"66d92f27-728f-40e6-8eb8-cbc9035b065c","originalAuthorName":"刘春立"},{"authorName":"王影","id":"979c7f8d-c704-49e7-a3c2-636903f5315c","originalAuthorName":"王影"},{"authorName":"谢国君","id":"6ac546bb-e959-4d7d-8016-729394f587d3","originalAuthorName":"谢国君"},{"authorName":"卢克非","id":"5075d180-3e27-4a38-a7ac-1768d61d01e4","originalAuthorName":"卢克非"}],"doi":"10.3969/j.issn.1007-2330.2014.06.015","fpage":"61","id":"43d87563-2d5a-47b1-aaab-c056176ec606","issue":"6","journal":{"abbrevTitle":"YHCLGY","coverImgSrc":"journal/img/cover/YHCLGY.jpg","id":"77","issnPpub":"1007-2330","publisherId":"YHCLGY","title":"宇航材料工艺 "},"keywords":[{"id":"c5bad47a-a2fa-43c7-94cf-faf8c28e4639","keyword":"30CrMnSiNi2A","originalKeyword":"30CrMnSiNi2A"},{"id":"c0bfc604-5aa0-4ca6-b4e4-dd69a14ca3c6","keyword":"双头螺栓","originalKeyword":"双头螺栓"},{"id":"11527a49-06d5-4320-9860-767613aecc07","keyword":"达克罗","originalKeyword":"达克罗"},{"id":"f03c3b5d-4d35-418d-a22d-3fb232090fc7","keyword":"氢脆","originalKeyword":"氢脆"},{"id":"2fd66283-d077-493c-95d8-fc768c0af954","keyword":"电化学腐蚀","originalKeyword":"电化学腐蚀"}],"language":"zh","publisherId":"yhclgy201406015","title":"30CrMnSiNi2A双头螺栓断裂失效分析","volume":"44","year":"2014"}],"totalpage":8536,"totalrecord":85353}