G.X.Wang
,
Steve Bewlay
,
L.Yang
,
J.Z.Wang
,
Y.Chen
,
Jane Yao
,
H.K.Liu
,
S.X.Dou
材料科学技术(英文)
Nanocrystalline LiFePO4 and Si-C powders were prepared as electrode materials for lithium-ion batteries. Near full capacity (170 mAh/g) was achieved at the C/8 rate at room temperature for LiFePO4 electrodes. Nanosize Si-C composite anode materials demonstrated a reversible lithium storage capacity of 1450 mAh/g with good cyclability when used as anodes in lithium-ion cells. Nanostructured electrode materials have an important role to play in developing a new generation of lithium-ion batteries that will offer a dramatic improvement in power delivery.
关键词:
Lithium-ion battery
,
null
,
null
,
null
Applied Physics a-Materials Science & Processing
Amorphous aluminate YAlO3 (YAO) thin films on n-type silicon wafers as gate dielectric layers of metal - oxide semiconductor devices are prepared by pulsed laser deposition. As a comparison, amorphous aluminate LaAlO3 (LAO) thin films are also prepared. The structural and electrical characterization shows that the as-prepared YAO films remain amorphous until 900 degrees C and the dielectric constant is similar to 14. The measured leakage current of less than 10(-3) A/cm(2) at a bias of V-G = 1.0 V for similar to 40-nm-thick YAO and LAO films obeys the Fowler Nordheim tunneling mechanism. It is revealed that the electrical property can be significantly affected by the oxygen pressure during deposition and post rapid thermal annealing, which may change the fixed negative charge density at the gate interface.
关键词:
hafnium oxide;si;stability;silicon;transition;dioxide;devices;hfo2