Author M. Miyahara1) and K. Tokimasa2) 1) Corporate Research & Development Laboratories
,
Sumitomo Metal Industries
,
Ltd.
,
Amagasaki
,
Japan2) Department of Mechanical Engineering
,
School of BiologyOriented Science and Technology
,
Kinki University
,
Uchitacho
,
Wakayama
,
JapanManuscript received 18 October 1998
金属学报(英文版)
The authors recent works on the improvement of the Strain Range Partitioning(SRP) method and its application to the life prediction of high temperature structural components are summarized. Examined components are divided into three groups, that is, components in the steel production plants, in the automobile and in the fossil power plants. Based on the results of the inelastic analysis and the creepfatigue properties of the material, which were obtained by IJ(=PP,PC, CP, CC) tests, the effects of the material properties, operating conditions and configuration of components were quantitatively evaluated to select the most effective measures for the thermal fatigue life extension. The SRP has been successfully applied until now to the life prediction and extension of the actual structural components subjected to thermal cycling by the authors.
关键词:
creepfatigue
,
null
,
null
,
null
Mehdi Ebrahimian-Hosseinabadi Fakhredin Ashrafizadeh Mohammadreza Etemadifar Subbu S. Venkatraman
材料科学技术(英文)
In this paper, preparation of nano-biphasic calcium phosphate (nBCP), mechanical behavior and load-bearing of poly (lactide-co-glycolide) (PLGA) and PLGA/nBCP are presented. The nBCP with composition of 63/37 (w/w) HA/β-TCP (hydroxyapatite/β-tricalcium phosphate) was produced by heating of bovine bone at 700°C. Composite scaffolds were made by using PLGA matrix and 10-50 wt% nBCP powders as reinforcement material. All scaffolds were prepared by thermally induced solid-liquid phase separation (TIPS) at -60°C under 4 Pa (0.04 mbar) vacuum. The results of elastic modulus testing were adjusted with Ishai-Cohen and Narkis models for rigid polymeric matrix and compared to each other. PLGA/nBCP scaffolds with 30 wt% nBCP showed the highest value of yield strength among the scaffolds. In addition, it was found that by increasing the nBCP in scaffolds to 50 wt%, the modulus of elasticity was highly enhanced. However, the optimum value of yield strength was obtained at 30 wt% nBCP, and the agglomeration of reinforcing particles at higher percentages caused a reduction in yield strength. It is clear that the elastic modulus of matrix has the significant role in elastic modulus of scaffolds, as also the size of the filler particles in the matrix.
关键词:
Scaffold
K. Mii (Sumitomo Metal Industries
,
Ltd.
,
1-t-3 Otemachi
,
Tokyo 100
,
Japan)M Amano (National Research Institute for Metals
,
1-2-1 Sengen
,
Tsukuba 305
,
Japan)
金属学报(英文版)
The R & D of hydrogen absorbing alloys in Japan started in the early 1970s.Many alloys such as TiMm1.5 based alloys, Fe-Ti-O alloys (e.g. FeTi1.15 O0.024) andthe(mischmetal)Ni5 based alloys (e.g. MmNi4.5 Cr0.46 Mn0.04) were developed by the early 1980s. The application of these alloys to hydrogen storage, heat storage, heat pump, hydrogen purification and motor vehicles has been tried in many iaboratories,and the various techniques for using hydrogen absorbing alloys have been developed.The standarkization of evaluation methods for hydrogen absorbing alloys has been promoted by the Ministry of International Trade and Industry (MITI), and four of them were established as Japanese Industrial Standard (JIS).Alloys for Ni-Metal Hydride batteries have been extensively investigated since 1987in Japun. Mm-Ni-Co-Al-Mn alloys (e.g. MmNi3.55 Co0.75Al0.9Mn0.4) have been devel-oped and commereialized since 1990. The amount of production of small-size Ni-MH batteries in 1995 was about three hundred milliion in number and about one hundred billion yen. The R & D for higher enerpy-density Ni-MH batteries is intensively in progress.MITI and STA (Science and Technology Agency) have promoted the R & D of hydro-gen absorbing alloys in Japan by carrying out the national projects such as Sunshine Program (MITI: 1974-1993) and Utilization of Wind Engeray (STA 1980-1985). The New Sunshine Program (MITI 1993-2020) have started in 1993. This program con-tains the application of hydrogen absorbing alloys to Economical- Enerpy- City System and to We-NET (International Clean Energy System of Technology Utilizing Hydro-gen: World Energy Network.
关键词:
hydrogen absorbing alloy
,
null
,
null
,
null
Dong LI
,
Zhentao YU
,
Weisheng TANG
,
Ju DENG
材料科学技术(英文)
NIN has developed a new type of Ti alloy. It is suitable for structure pieces applied in high-temperature and high-pressure water/steam conditions. Its nominal composition is Ti-4Al-2V. In this paper, its microstructure, mechanical properties and corrosion resistance were studied in detail.
关键词:
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.
关键词:
bamboo;bast fiber;biomimetics;engineering composites
Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior
Journal of Testing and Evaluation
Two parameters, surface yield strength and surface work hardening exponent, have been newly suggested in this paper to characterize the superficial mechanical features in engineering metallic materials. Emphasis was placed on the method by which the two parameters are determined. X-ray stress determination and strain gage techniques were employed to measure stress and strain. The Mises effective stresses at a sample surface under different loading conditions were then calculated with the measured data; hence, the relationship between stress and strain was available. Consequently, with the data processing procedure for general yield point and work hardening exponent of uniaxially loaded materials, the yield point and work hardening exponent at the sample surface can thereby be obtained. Experimental studies on a shot-peened surface showed satisfactory results when the described method was used.
关键词:
biaxial stress;effective stress;mises yielding criterion;surface;yield strength;surface work hardening exponent