Metallurgical Transactions B-Process Metallurgy
In this work, the solidification and segregation behaviors of 8090 Al-Li alloy have been investigated with differential thermal analysis (DTA) and the metallographic-electron microprobe method. The results show that 8090 Al-Li alloy has a much more complex solidification path than Al-Li binary alloy due to the addition of many alloying elements and the presence of impure elements. Solidification begins at about 635-degrees-C with the reaction of L --> alpha-Al + L', and this reaction goes on to termination. The alloying element Cu and impure elements Fe and Si have a strong segregation tendency. During solidification, Cu segregates to the interdendrite and finally forms alpha-Al + T2 eutectic. As a result, the solidification temperature range is greatly extended. Iron and Si form the insoluble constituents Al7Cu2Fe, AlLiSi, etc., although their concentrations in the alloy are quite low. With the increase of Fe content, there is a eutectic reaction of alpha-Al/Al3Fe at about 595-degrees-C. The formation of insoluble constituents is influenced by both concentrations of impure elements in the alloy and the cooling rate.
关键词:
fracture-behavior;phase-equilibria;cu alloys;microstructure;lithium;zr
LIU Yulin ZHANG Yun ZHAO Hong'en HU Zhuangqi SHI Changxu Institute of Metal Research
,
Academia Sinica
,
Shenyang
,
China Associate Professor
,
Institute of Metal Research
,
Academia Sinica
,
Shenyang 110015
,
China
金属学报(英文版)
The solid-liquid interface morphology and solute segregation behaviour of AI-Li alloy 8090 during unidirectional solidification were studied by the liquid metal quenehing method under varied processing conditions.When solidification rate,RO.75 mm/min (temper- ature gradient,G_L=130℃/cm),the structure revealed of planar or dendritic interface respectively.With the increase of R,the interface morphology becomes cellular from planar gradually,within a narrow range.And the greater the R,the,finer the dendrite.Segregation of element Cu and impurity elements Fe and Si are quite severe,the interface morphology markedly influences on solute segregation.During solidification at coarse dendrite interface, their segregation ratios are rather great and solidified structure is coarse.
关键词:
Al-Li alloy
,
null
,
null
,
null
,
null
Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing
The microstructural evolution during solidification and subsequent solid-state transformation of AISI 304 stainless steel is studied by directional solidification and quenching methods in this paper. The phase transformation sequence in the steel directionally solidified is that the precipitation of primary ferritic dendrites, ferrite-austenite eutectic reaction, and the direct formation of austenite occur in sequence during the directional solidification of the austenitic stainless steel. At the eutectic reaction stage, plenty of columnar and cellular eutectic colonies composed of the coupled growth of lamellar ferrite and austenite take place. During the course of subsequent solid-state transformation, austenite grows into ferrite gradually, resulting in the disappearing of eutectic colonies and thinning of primary ferritic dendrites, and dendrite cores of primary ferrite are retained as the final skeletal ferrite in the final microstructure. (c) 2006 Elsevier B.V. All rights reserved.
关键词:
austenitic stainless steel;directional solidification;eutectic colony;austenitic stainless-steel;cr-ni alloys;sequence;welds
Wenjing Yao
材料科学技术(英文)
The liquid-solid transitions of (Co2Si+CoSi) and (CoSi+CoSi2) eutectic alloys were realized in drop tube and the rapid eutectic growth mechanism of intermetallic compounds was examined. The experimental and calculated results indicate that with increasing Co content, the intermetallic compound prefers nucleating primarily. The eutectic microstructures experience the transitions of `lamellar-anomalous-divorced' eutectic with undercooling. In undercooled state, the growth of CoSi intermetallic compound always lags behind others, and no matter how large the undercooling is, this intermetallic compound grows under the solutal diffusion control. The calculated coupled zone demonstrates that (Co2Si+CoSi) eutectic can form within certain undercooling regime, when the composition is in the range from 23.6% to 25.4% Si. And the calculated coupled zone of (CoSi+CoSi2) covers a composition range from 40.8% to 43.8% Si.
关键词:
Liquid-solid transition
Journal of Materials Science
The Pd77.5Au6Si16.5 alloy was studied by drop-tube processing. Palladium solid-solution phase was found in smaller droplets (diameter D < 400 m), while in larger droplets, the intermetallic compound Pd3Si was observed. The difference in free energy between the undercooled liquid and the solid state, the activation energy for the formation of post-critical nuclei, the nucleation frequency and the crystal growth velocity, were calculated as functions of temperature for palladium solid solution and Pd3Si phases. These calculations led to time-temperature-transformation curves which were capable of describing the experimental findings on the kinetics of solidification of this alloy.
关键词:
metallic glasses;solidification
Chunju WANG
,
Debin SHAN
,
Bin GUO
,
Jian ZHOU
,
Lining SUN
材料科学技术(英文)
From the viewpoint of production engineering, microforming is considered as an effective process to fabricate various microparts. Several key problems in microforming processes were investigated. A new microforming apparatus with a high stiffness piezoelectric actuator as the punch driver was developed to produce microparts. To improve the forming abilities and locate the billets, a floating microdie was designed. The size effects of the billets and die cavities on the microforming abilities were studied with upsetting and coining tests, respectively. And the isothermal microforming process of microgears was performed with the developed microforming apparatus. Several analysis methods were used to evaluate the forming quality of the microparts.
关键词:
Microforming
,
尺寸效应
,
微塑性成形设备
,
浮动