Shixi ZHAO
,
Hanxing LIU
,
Qiang LI
,
Shixi OUYANG
材料科学技术(英文)
Orthorhombic LiMnO2 cathode materials were synthesized successfully at lower temperature by sol-gel method. When LiMnO2 precursor prepared by sol-gel method was fired in air, the product was a mixture of spinel structure LiMn2O4 and rock-salt structure Li2MnO3, whereas in argon single-phase orthorhombic LiMnO2 could obtain at the range of 750℃ to 920℃. The substitution of Mn by Zn2+ or Co3+ in LiMnO2 led to the structure of LiMnO2 transiting to α-LiFeO2. The results of electrochemical cycles indicated that the discharged capacity of orthorhombic-LiMnO2 was smaller at the initial stages, then gradually increased with the increasing of cycle number, finally the capacity stabilized to certain value after about 10th cycles. This phenomenon reveals that there is an activation process for orthorhombic LiMnO2 cathode materials during electrochemical cycles, which is a phase transition process from orthorhombic LiMnO2 to tetragonal spinel Li2Mn2O4. The capacity of orthorhombic LiMnO2 synthesized at lower temperature is larger than that synthesized at high temperature.
关键词:
Orthorhombic LiMnO2
,
null
,
null
,
null
Jiansen NI
,
Hui XU
,
Mingyuan ZHU
,
Qiang LI
,
Bangxin ZHOU
,
Yu
,
a DON
材料科学技术(英文)
Nd8.5Fe74Co5Cu1Nb1Zr3Cr1B6.5 bonded magnets were prepared by melt-spun and subsequent heat treatment. Magnetic properties of Br=0.68 T, JHc=716 kA/m, (BH) max=77 kJ/m3 were achieved. The addition of Cr element shows to be significantly advantageous in reducing grain size and increasing the intrinsic coercivity.
关键词:
null
,
Nanocrystalline
,
Melt-spinning
,
Ma
Xuehua ZHANG
,
Yuanbin KANG
,
Sipeng LIU
,
Qiang LI
,
Ying YANG
材料科学技术(英文)
TaN/NbN multilayered coatings with nanoscale bilayer periods were synthesized at different Ar/N2 flow rate by r.f. magnetron sputtering. XRD and nano indenter were employed to investigate the influence of Ar/N2 flow rate on microstructure and mechanical properties of the coatings. The low-angle XRD pattern indicated a well-defined composition modulation and layer structure of the multilayered coating. All multilayered coatings almost revealed higher hardness than the rule-of-mixtures value of monolithic TaN and NbN coatings. At FAr:FN2 =10, the multilayered coating possessed excellent hardness, elastic modulus, internal stress, and fracture resistance, compared with ones synthesized at other Ar/N2 flow rates. The layered structure with strong mixture of TaN (110), (111), (200) and Nb2N (101) textures should be related to the enhanced mechanical properties.
关键词:
RF magnetron sputtering
,
TaN/NbN多层膜
,
纳米尺度
Jiaqi ZHU
,
Jiecai HAN
,
Songhe MENG
,
Qiang LI
,
Manlin TAN
材料科学技术(英文)
The microstructure and properties of tetrahedral amorphous carbon (ta-C) films deposited by the filtered cathodic vacuum arc technology has been investigated by visible Raman spectroscopy, AFM and Nano-indentor. The Raman spectra have been fitted with a single skewed Lorentzian lineshape described by BWF function defining coupling coefficient, which characterizes the degree of asymmetry and is correlated with the sp3 content. When the substrate bias is -80 V, the sp3 content is the most and simultaneously the coupling coefficient is the least, following with the minimum root mean square surface roughness (Rq=0.23 nm) and the highest hardness (51.49 GPa), Young’s modulus (512.39 GPa), and critical scratching load (11.72 mN). As the substrate bias is increased or decreased, the sp3 content and other properties lower correspondingly.
关键词:
Tetrahedral amorphous carbon
,
null
,
null
李志宏
,
柳卫平
,
白希祥
,
郭冰
,
连钢
,
颜胜权
,
王宝祥
,
陆昀
,
曾晟
,
苏俊
原子核物理评论
doi:10.3969/j.issn.1007-4627.2005.01.006
利用8Li次级束测量了质心系能量7.8 MeV 2H(8Li, 9Li)1H反应的角分布, 导出了8Li(d, p)9Li反应的天体物理S因子及9Li→8Li+n虚衰变的渐近归一化系数.
关键词:
8Li(d,p)9Li反应
,
角分布
,
天体物理S因子
,
渐近归一化系数
HUANG Jianshun CHEN Junming Shanghai Institute of Metallurgy
,
Academia Sinica
,
Shanghai
,
China Research Associate
,
Shanghai Institute of Metallurgy
,
Academia Sinica
,
Shanghai 200050
,
China
金属学报(英文版)
Crystal structure of γ-Li_xFe_2O_3,inserted Li electrochemically,was studied by Moss- bauer spectroscopy together with X-ray diffraction,XPS and electrochemical method,On the insertion of Li at low current density,the crystal structure is keeping original spinel; while at higher current density or by thermal activation,owing to violent movement of Li~+ ions,part of crystal structure transforms into rock type similar to face-centered cubic structure of ferrous oxide.The transition channels during insertion of Li~+ ions and limitation of Li~+ ions inserted were discussed.
关键词:
null
,
null
,
null
Journal of Materials Research
The effect of Li(3)N additive on the Li-Mg-N-H system was examined with respect to the reversible dehydrogenation performance. Screening Study with varying Li(3)N additions (5, 10, 20, and 30 mol%) demonstrates that all are effective for improving the hydrogen desorption capacity. Optimally, incorporation of 10 mol% Li(3)N improves the practical capacity from 3.9 wt% to approximately 4.7 wt% hydrogen at 200 degrees C, which drives the dehydrogenation reaction toward completion. Moreover, the capacity enhancement persists well over 10 de-/rehydrogenation cycles. Systematic x-ray diffraction examinations indicate that Li(3)N additive transforms into LiNH(2) and LiH phases and remains during hydrogen cycling. Combined structure/property investigations suggest that the LiNH(2) "seeding" should be responsible for the capacity enhancement, which reduces the kinetic barrier associated with the nucleation of intermediate LiNH(2). In addition, the concurrent incorporation of LiH is effective for mitigating the ammonia release.
关键词:
complex hydrides;improvement;mixtures;imides;amide;h-2
MANG Weishi WANG Guozhi ZHANG Yongchang HU Zhuangqi SHI Changxu Institute of Metal Research
,
Academia Sinica
,
Shenyang
,
China Yongchang Associate Professor
,
Institute of Metal Research
,
Academia Sinica
,
Shenyang 110015
,
China
金属学报(英文版)
A rapidly solidified microcrystalline Al-Li-Cu-Mg-Zr alloy and its superplasicity have been investigated.An optimum tensile elongation of 585% was obtained at 540℃ and strain rate 1.67×10~(-2)s~(-1).The superplastic Al-Li alloy is manufaetured using thermomechanical pro- cessing:solution,overaging,warm rolling and recrystallization.Microstructural changes in thermomechanical processing and cavitation occurred during superplastic deformation have been observed.The superplastic failure of alloy may be caused mainly by nucleation and growth of cavities as well as the linkage around grains.
关键词:
superplasticity
,
null
,
null
,
null