BAL■ P
,
ACHIMOVI■OV M
,
SEPLAK VInstitute of Geotechnics of Slovak Academy of Sciences
,
Kosice
,
SlovakiaBASTLZJ.Heyrovsky Institute of Physical Chemistry
,
Academy of Sciences of the Czech Republic
,
Prague
,
C. R. LIPAKJSlovak Technical University
,
Electrotechnical Faculty
,
Bratislava
,
Slovakia Manuscript received 22 February
,
1994
金属学报(英文版)
The mechanical activation of tetrahedrite Cu_(12)Sb_(4)S_(13) was carried out in a planetary mill. The changes in the surface and bulk properties produced in mineral by mechanical activation were detected by infrared, photoelectron and Mossbauer spectroscopy. The rate and selectivity of tetrahedrite acid leaching depends on conditions of mechanical activation.
关键词:
mechanical activation
,
null
,
null
B.W. Wang
,
H. Shen
金属学报(英文版)
Ni-Cr System solar selective thin solid films were prepared by d.c. magnetron reactivesputtering under the atmosphere of O2 and N2. Ni-Cr alloy was chosen as targetmaterial and copper sheets as substrate. Using SEM, Spectrophotometer and Talystepto analyze the relations between the selective characteristic and the structure, theformation and the thickness of the thin films. The aim is to obtain good solar selectivethin films with high absorptance and low emittance, which is applied to flat plate solarheat collectors.
关键词:
solar selective thin film
,
null
,
null
,
null
朱杰武
,
柳永宁
,
许雁
,
冯耀荣
机械工程材料
doi:10.3969/j.issn.1000-3738.2005.06.007
在不同温度下测试了X70管线钢动态断裂韧度K1d、J1d和止裂韧度K1a以及夏氏V型缺口冲击韧度Ak,对三者的关系进行了分析.结果表明:温度和加载速率都对断裂韧度产生影响;加载速率变化引起的韧-脆断裂转变具有热激活特征,在热激活分析基础上,在应力强度因子速率K=15 MPa·m1/2s-1条件下,得出断裂韧度、止裂韧度和冲击韧度三者的关系:Ak=4.84×106T-2.8K1d(或K1a).可以用小试样Ak数据计算得到K1d和K1a.
关键词:
管线钢
,
断裂韧度
,
止裂韧度
,
韧-脆断裂转变
材料科学技术(英文)
BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.
关键词:
medical stainless steel;nitrogen;nickel-free;nickel-allergy;blood;compatibility;austenitic steels;high-nitrogen;corrosion;cells
Yibin REN
,
Ke YANG
,
Bingchun ZHANG
,
Yaqing WANG
,
Yong LIANG
材料科学技术(英文)
BIOSS4 steel is essentially a nickel-free austenitic stainless steel developed by the Institute of Metal Research, Chinese Academy of Sciences, in response to nickel allergy problems associated with nickel-containing stainless steels that are widely used in medical applications. The high nitrogen content of this steel effectively maintains the austenitic stability and also contributes to the high levels of corrosion resistance and strength. BIOSS4 steel possesses a good combination of high strength and toughness, better corrosion resistance, and better blood compatibility, in comparison with the medical 316L stainless steel. Potential applications of BIOSS4 steel can include medical implantation material and orthodontic or orthopedic devices, as well as jewelries and other decorations.
关键词:
Medical stainless steel
,
null
,
null
,
null
,
null
Z. Sun
,
S.L. Zheng
,
Y. Zhang
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
,
null
金属学报(英文版)
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.
关键词:
chromite
,
null
,
null
,
null
新型炭材料
The 2011 Annual World Conference on Carbon (Carbon 2011) was held in Shanghai, China, during 24-29 July, 2011. This conference was hosted jointly by East China University of Science and Technology, University of Shanghai for Science and Technology, and Institute of Coal Chemistry Chinese Academy of Sciences. About 800 attendees from 42 countries/regions participated in this conference, and 797 papers were accepted for presentation, including 5 plenary lectures, 42 keynote lectures, 280 oral presentations, and 470 posters, involving 10 topics: graphene; nanocarbon, carbon for energy storage and conversion, porous carbon and adsorption, carbon fiber and composites, precursor/carbonization and graphitization, computation and modeling, bio-carbon and safety, novel experimental techniques and characterization, bulk carbon and industrial applications. Research and development of nanocarbons are quite active and in particular, graphene received tremendous interest. Rapid progress has also been made on the electrochemical properties, energy conversion and energy storage applications of carbon materials.
关键词:
材料导报
多相材料是材料研究发展的必然结果。提出多相材料的研究,目的是要拓宽材料研究的视野,主张模糊各类材料的界限,运用纳米材料制备技术,博采各类材料制备工艺之所长,以使用上的要求为材料研究的准则,制作出低成本和高性能稳定性的材料。还强调在考虑材料研究中的问题时,始终以满足使用要求为目标,并不一味地追求材料的高性能,务求创新。提倡用逆向思维来考虑多相材料的研完,研究对象则针对于信息、能源、生物和环保领域的应用。多相材料材料研究About the Research of Multi-phase MaterialsGuo Jingkun (Shanghai Institute of Ceramics,Chinese Academy of Sciences ,Shanghai 200050, China)
关键词: