Dianyu GENG
,
Zhidong ZHANG
,
Baozhi CUI
,
Zhijun GUO
,
Wei LIU
,
Xinguo ZHAO
材料科学技术(英文)
The structure and magnetic properties of SmyFe(100-1.5)yC(0.5y)(y=8 similar to 20) alloys prepared by mechanical alloying (MA) from Sm, Fe and graphite have been investigated systematically. In order to improve hard magnetic properties of the alloys prepared by mechanical alloying, a new method consisting of re-milling and re-annealing was developed. After being re-milled and re-annealed, the Curie temperature T-C of the Sm-Fe-C alloys changes. The T-C of 2:17 phase increases, whereas the T-C of 2:14:1 phase decreases. After being re-annealed at low temperatures, the grain sizes of hard phases are smaller than those in the alloys annealed at high temperatures. The effects of Co or Ti substitution for Fe are studied.
关键词:
Jian ZHANG
,
Xiaokai SUN
,
Wei LIU
,
Baozhi CUI
,
Xinguo ZHAO
,
Zhidong ZHANG
材料科学技术(英文)
Structure and magnetic properties of the nanocomposite magnets prepared by mechanical alloying procedure with composition 55 wt pct Nd (Fe0.92B0.08)5.5+45 wt pct a-Fe, 55 wt pct Nd(Fe0.8-xCo0.12Nbx B0.08)5.5+45 wt pct a-Fe (x=0.00, 0.01, 0.03) and 55 wt pct (Nd0.9Dy0.1) (Fe0.77Co0.12Nb0.03B0.08)5.5+45 wt pct a-Fe were studied. It was found that substitution of Co for Fe could significantly improve the permanent magnetic properties of the nanocomposite magnets and typically, the maximum magnetic energy product was increased from 104.8 kJ/m3 (13.1 MGOe) to 141.6 kJ/m3 (17.7 MGOe). In contrast to the case of conventional nominally single-phase magnets, the addition of Nb results in promoting the growth of a-Fe grain and is thus unfavorable for the improvement of permanent magnetic properties of the nanocomposites. Although the addition of Dy can increase the coercivity of the magnets, the increase of magnetic anisotropy of hard phase leads to decrease of the critical grain size of soft phase. Additionally it causes the difficulty of preparing the nanocomposites because it is more difficult to control the grain size of soft phase to meet the requirement of appropriate exchange coupling between hard and soft grains.
关键词:
Zhijun GUO
,
Zhidong ZHANG
,
Xinguo ZHAO
,
Bowen WANG
,
Dianyu GENG
材料科学技术(英文)
Structure and magnetostriction of Dy1-xPrxFe2 (0 less than or equal to x less than or equal to 0.5), Dy0.6Pr0.4(Fe1-yTy)(2) (0 less than or equal to y less than or equal to 0.6), and Tb1-zPrz(Fe0.4Co0.6)(2) (0 less than or equal to z less than or equal to 1.0) alloys (T=Co, Ni) have been investigated. It is found that the matrix of the alloys Dy1-xPrxFe2 is a single phase (Dy, Pr)Fe-2 with MgCu2-type structure and the second phase is (Dy, Pr)Fe-3 when x less than or equal to 0.2. The amount of (Dy, Pr)Fe-3 phase increases with increasing Pr content and becomes the main phase when x=0.4. The matrix of Dy1-xPrxFe2 is found to be the (Dy, Pr)(2)Fe-17 phase with Th2Zn17-type structure when x=0.5. It is found that the amount of the cubic Laves phase (Dy, Pr)(Fe, Co)(2) in the Dy0.6Pr0.4(Fe1-yCoy)(2) increases with increasing Co concentration when 0 less than or equal to y less than or equal to 0.6. The substitution of Ni for Fe is nearly not favorable for the formation of the cubic Laves phase (Dy, Pr)(Fe, Ni)(2) in (Dy1-xPrx)Fe-2. The matrix of (Tb1-zPrz)(Fe0.4Co0.6)(2) is a (Tb, Pr)(Fe, Co)(2) phase with the MgCu2-type cubic Laves structure and a second phase of small amount is (Tb, Pr)(Fe, Co)(3) phase when z less than or equal to 0.2, z=0.5 and 1.0. When 0.2
关键词:
中国腐蚀与防护学报
N。1Atmospheric Corrosivlty for Steels………………………………………………… .LIANG Caideng HO[I i。-tat(6)Caustic Stress Corrosion Cr。king of Alloy 800 Part 2.The Effect of Thiosul执e……………………………………… KONG De-sheng YANG Wu ZHAO Guo-zheng HUANG De.ltL。ZHANG Yu。。he CHEN She。g-bac(13)SERS slid E16CttOCh6iniC81 Stlldy Of Illhibit1Oli M6ch&tllsth Of ThlollY68 Oil ITOll ID H....
关键词:
Europhysics Letters
Noncollinear magnetic investigations of the ground state in PrFeAsO have been performed by the density-functional theory. We calculated the total energy and made structure optimization, and the electronic density of states of PrFeAsO was analyzed. There are three different magnetic structures in PrFeAsO defined by experiments. Based on these magnetic structures, we studied four collinear and four noncollinear cases. The ground state is found to take the ordering proposed by Zhao, in which the FeAs plane is of stripe antiferromagnetism and Pr spins are perpendicular to Fe spins. The electronic density of states indicates that for PrFeAsO the increase of the electron Coulomb interaction leads to a decrease in conductivity. Copyright (C) EPLA, 2011
关键词:
high-temperature superconductivity;phase-diagram;oxypnictides;instability
刘建国
,
安振涛
,
张倩
,
杜仕国
,
姚凯
,
王金
材料导报
doi:10.11896/j.issn.1005-023X.2017.04.030
为评估氧化剂硝酸羟胺的热稳定性,使用标准液体铝皿于3 K/min、4 K/min、5 K/min加热速率下进行热分析.借助非等温DSC曲线的参数值,应用Kissinger法和Ozawa法求得热分解反应的表观活化能和指前因子,根据Zhang-Hu-Xie-Li公式、Hu-Yang-Liang-Xie公式、Hu-Zhao-Gao公式以及Zhao-Hu-Gao公式,计算硝酸羟胺的自加速分解温度和热爆炸临界温度,并对热分解机理函数进行了研究.设计了7条热分解反应路径,采用密度泛函理论B3LYP/6-311++G(d,p)方法对硝酸羟胺的热分解进行了动力学和热力学计算.计算结果表明,硝酸羟胺热分解的自加速分解温度TsADT=370.05 K,热爆炸临界温度Te0=388.68K,Tbp0=397.54 K,热分解最可几机理函数的微分形式为f(a) =17×(1-α)18/17.硝酸羟胺热分解各路径中,动力学优先支持路径Path 6、Path 5、Path 4和Path 1生成NO和NO2,其次是Path 2、Path 7和Path 3生成N2和N2O.温度在373 K以下时,Path 1'反应无法自发进行,硝酸羟胺无法进行自发的热分解.从热力学的角度来看,硝酸羟胺在370.05K以下储存是安全的.
关键词:
硝酸羟胺
,
热分析
,
热稳定性
,
热分解机理
,
密度泛函理论