S. X. Wanng
,
D. S. Zheng
,
Y. L. Liu 1) Department of Material Engineering
,
Luoyang Institute of Technology
,
Luoyang 471039
,
China 2) Luoyang Copper (Group) Co.
,
Ltd
,
Luoyang
,
China
金属学报(英文版)
As far as the accuracy of calculating unsteady temperature field is concerned, it is very important to find the accurate physical parameters such as specific heat, thermal conductivity, latent heat of phase transformation and surface heat flux. The model for calculating H and Q is established in this paper. The measurement methods and data processing for physical parameters such as volume specific heat C, thermal conductivity k, volume latent heat of phase transformation c1 and surface heat flux are introduced The physical parameters of 1Cr18Ni9Ti and 45 steels and the surface heat flux for 1 Cr18Ni9Ti probe cooled in water,10% NaCl water and oil with different temperatures are measured, respectively. These data show that the probability of absolute error less than 2* C between the calculated and measured values in temperature field calculation reaches above 80% if using the above physical parameters, which provides a reliable technology basis for precise calculation of temperature field.
关键词:
unsteady temperature field
,
null
Fang Geng
材料科学技术(英文)
Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately
controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactive β-
tricalcium phosphate (β-TCP) coatings were prepared on the porous Mg to further improve its biocompatibility,
and the biodegradation mechanism was simply evaluated in vitro. It was found that the mechanical properties
of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength
similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed
that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the β-
TCP coated porous Mg, which indicates that the β-TCP coated porous Mg is promising to be a bone tissue
engineering scaffold material.
关键词:
Magnesium
,
Bone tissue engineering
,
β-TCP coating
,
Biocompatibility
材料科学技术(英文)
Three-dimensional honeycomb-structured magnesium (Mg) scaffolds with interconnected pores of accurately controlled pore size and porosity were fabricated by laser perforation technique. Biodegradable and bioactive beta-tricalcium phosphate (beta-TCP) coatings were prepared on the porous Mg to further improve its biocompatibility, and the biodegradation mechanism was simply evaluated in vitro. It was found that the mechanical properties of this type of porous Mg significantly depended on its porosity. Elastic modulus and compressive strength similar to human bones could be obtained for the porous Mg with porosity of 42.6%-51%. It was observed that the human osteosarcoma cells (UMR106) were well adhered and proliferated on the surface of the beta-TCP coated porous Mg, which indicates that the beta-TCP coated porous Mg is promising to be a bone tissue engineering scaffold material.
关键词:
Magnesium;Bone tissue engineering;beta-TCP coating;Biocompatibility;simulated body-fluid;mechanical-properties;cancellous bone;foam;scaffolds;magnesium;hydroxyapatite;porosity;bioceramics;fabrication;ph
高健
,
康健
,
吴学玲
,
徐競
,
李邦梅
,
邱冠周
中国有色金属学报
以分离于江西某铜矿的嗜铁钩端螺旋菌(L. ferriphilum YSK)菌株为研究对象,报道不同Fe2+浓度对 L. ferriphilum生长活性的影响.结果表明,YSK菌株生长最适宜的Fe2+浓度约为0.1 mol/L.当初始Fe2+浓度为0.4 mol/L时,进入对数生长期前很明显需要一个较长的延迟期,表明该Fe2+浓度对细胞的生长产生较强的抑制作用;当初始Fe2+浓度为0.6 mol/L时,YSK菌株的生长完全受到抑制.尽管高浓度的Fe2+抑制细胞的生长,但受到抑制而不生长繁殖的YSK细胞仍然具有氧化Fe2+的能力.
关键词:
L.ferriphilum YSK菌株
,
Fe2+
,
生长活性
Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior