C. Jiang
,
Y.B. Chen
,
B.S. Wu
,
Q.L. Jin
金属学报(英文版)
Temperature field numerical simulation about he heat treatment process curve of large turbine rotor is presented. With simulation software Deform3D in according to the heat treatment processing of China First Heavy Machinery, the details of temperature change at the different location of the rotor is to be found. Once knowing the temperature field change, the duplex grain defect long time existed in large forgings can be solved with a quantitative analysis instead of only the qualitative one. Precondition for small metal samples is brought to simulate microstructure and grain size change of large rotor according to the numerical simulation result. Also, consistent feature with real manufacture is showed from the physical experiment, so that the simulation can be used to not only improve the products process but also prevent wasting unnecessary energy and shorten process periods. The rotor quality is controlled thoroughly with plenty of experiments data.
关键词:
temperature field
,
null
,
null
L.Q. Li
,
Y.B. Chen
,
X.Y. Wang
,
S.Y. Lin
金属学报(英文版)
Laser forming involves heating sheet metal workpiece along a certain path with a
defocused laser beam directed irradiate to the surface. During laser forming, a transient temperature fields is caused by the irradiation and travelling of a laser beam.
Consequently, thermal expansion and contraction take place, and allows the thermal-
mechanical forming of complex shapes. This is a new manufacturing technique that
forming metal sheet only by thermal stress. Therefore, the analysis of temperature
fields and stress fields are very useful for studying the forming mechanism and controlling the accuracy of laser forming. The non-liner finite element solver, MARC, is
employed to solve the thermal-mechanical analysis. Using this model, the stress and
strain distribution of pure aluminum plate with di®erent thickness are analyzed. The
influence of scanning speed on temperature fields and plastic strain of metal sheet under the condition of constant line energy are also presented. Numerical results agree
well with the experimental results.
关键词:
laser forming
,
null
,
null
Journal of Materials Research
The morphology of the dark and bright regions observed by transmission electron microscopy for the Zr(64.13)Cu(15.75)Ni(10.12)Al(10) bulk metallic glass strongly depends on the ion beam parameters used for ion milling. This indicates that the ion beam could introduce surface fluctuation to metallic glasses during ion milling.
关键词:
room-temperature
李开明
,
李亚洲
,
冯维贵
,
林长
量子电子学报
doi:10.3969/j.issn.1007-5461.2007.05.014
采用非线性反馈控制,用附加了带参数的正弦项对Chen系统进行了有效的控制.随着参数k的逐渐增大,系统的动力学行为呈现出一系列的变化.数值研究结果表明:随控制参数的增大,驱动信号的强度渐大,混沌系统由混沌运动到周期轨道,最终到一相点.
关键词:
混沌
,
Chen系统
,
不动点
,
Lyapunov指数
,
反馈控制
Physics Letters A
The magnetic properties of the mixed ferro-ferrimagnetic compounds with (A(a)B(b)C(c))(y)D, in which A, B, C and D are four different magnetic ions and form four different sublattices, are studied by using the Ising model. And the Ising model was dealt with standard mean-field approximation. The regions of concentration in which two compensation points or one compensation point exit are given in c-a, b-c and a-b planes. The phase diagrams of the transition temperature T-c and compensation temperature T-comp are obtained. The temperature dependences of the magnetization are also investigated. Some of the result can be used to explain the experimental work of the molecule-based ferro-ferrimagnet ((NiaMnbFecII)-Mn-II-Fe-II)(1.5) [Cr-III (CN)6] - zH(2)O. (C) 2003 Elsevier B.V. All rights reserved.
关键词:
mixed ferro-ferrimagnet;Ising model;four sublattices;phase diagram;transition temperature;compensation temperature;magnetic-properties;prussian blue;alloy
陈伟荣
,
王清
,
程旭
,
张庆瑜
,
董闯
金属学报
在三元Fe-B-Y合金系中, 以团簇线判据设计了5个基础合金成分, 即5条成分线Fe8B3-Y, Fe8B2-Y, Fe83B17-Y, Fe6B-Y和Fe9B-Y与一条团簇线Fe12Y-B的交点. 在此基础上加入微量Nb和M(M=Ti, Hf, Ta, Mo, Ni和Sn)形成五元合金, 用铜模铸造方法制备出直径为3 mm的合金棒. 考虑到元素B和Y在合金制备过程中的损耗, 对每个合金进行了成分修正.在M=Ti, Hf, Ta和Mo时, 能够形成块体非晶合金的三元基础成分均接近Fe8B3-Y与Fe12Y-B两条团簇线交点成分, 表明其对应的基础团簇为Archimedes八面体反棱柱Fe8B3. 最佳非晶成分为(Fe69.9B24.6Y5.5)96Nb2Ti2,其Tg=944 K, Tx=997 K, Trg=0.666.当M=Ni和Sn时, 均没有得到块体非晶合金.
关键词:
团簇线
,
Fe-based bulk metallic glass
,
composition design
陈伟荣
,
王清
,
程旭
,
张庆瑜
,
董闯
金属学报
doi:10.3321/j.issn:0412-1961.2007.08.003
在三元Fe-B-Y合金系中,以团簇线判据设计了5个基础合金成分,即5条成分线Fe8B3-Y,Fe8B2-Y,Fe83B17-Y,Fe6B-Y和Fe9B-Y与一条团簇线Fe12Y-B的交点.在此基础上加入微量Nb和M(M=Ti,Hf, Ta,Mo,Ni和Sn)形成五元合金,用铜模铸造方法制备出直径为3 mm的合金棒.考虑到元素B和Y在合金制备过程中的损耗,对每个合金进行了成分修正.在M=Ti,Hf,Ta和Mo时,能够形成块体非晶合金的三元基础成分均接近Fe8B3-Y与Fe12Y-B两条团簇线交点成分,表明其对应的基础团簇为Archimedes八面体反棱柱Fe8B3.最佳非晶成分为(Fe69.9B24.6Y5.5)96Nb2Ti2,其Tg=944 K,Tx=997 K,Trg=0.666.当M=Ni和Sn时,均没有得到块体非晶合金.
关键词:
团簇线
,
铁基块体非晶合金
,
成分设计
Journal of Applied Physics
The magnetic properties of R2Co14B1-xCx (x=0, 0.5 and R=Y, Sm) compounds have been studied by measuring the temperature dependence of the easy- and hard-magnetization curves on magnetically aligned samples between 1.5 and 300 K for Y2Co14(B,C) and at 4.2 K for Sm2Co14(B,C). The magnetic anisotropy of Y2Co14B increases due to the substitution of C for B, whereas the saturation magnetization decreases. Between 1.5 and 300 K, the anisotropy field of Y2Co14B0.5C0.5 increases about 2 T and the Co moment decreases about 0.05mu(B). The anisotropy field Of Sm2Co14B also increases upon C substitution and the saturation magnetization decreases slightly. The ac susceptibilities of both SM2Co14B and Sm2Co14B0.5C0.5 exhibit anomalies that may arise from a spin reorientation within the basal plane.
关键词:
nd2fe14b;exchange;nd2co14b;r2fe14b;field
Journal of Applied Physics
Y2Fe14B0.5C0.5 has the same tetragonal structure as Y2Fe14B with space group P4(2)/mnm. Magnetic properties of the Y2Fe14B0.5C0.5 compound have been studied using an extraction magnetometer with a maximum field of 6 T, in the temperature range from 1.5 to 300 K. By means of fitting the hard magnetization curves, the magnetocrystalline anisotropy constants K1, K2, and K3 were determined. It was found that although the magnetocrystalline anisotropy field (mu-0H-a) increases abnormally with increasing temperature as in the case of Y2Fe14B, the dependence of anisotropy constants on temperature is quite different from that of Y2Fe14B. K1 and K3 decrease slightly with increasing temperature. K2 increases abnormally with increasing temperature, which contributes to the abnormal dependence of anisotropy field on temperature. In addition, the substitution of carbon for boron leads to a reduction of 3d-3d interaction and spontaneous magnetization. In contrast, uniaxial anisotropy is increased by the addition of carbon below room temperature.
关键词:
alloys