S.J. Zhao
,
Y.C. Wang
,
J.Q. You
,
Q.B. Yang
,
L.G. Zhou and H.Q. Ye (Department of Physics
,
Xiangtan University
,
Xiangtan 411105
,
China)(Laboratory of Atomic Imaging of Solids
,
Institute of Metal Research
,
The Chinese Academy of Sciences
,
Shenyang 110015
,
China)(Department of Materials Science
,
Northeastern University
,
Shenyang 110006
,
China)
金属学报(英文版)
A structural transition in the fcc ∑=5 (120)/[001] high-angle tilt grain-boundary(GB)is investigated by molecular-dynamics simulation. The calculations have been performed at various temperutures and the thermodynamic melting point Tm of the model system is determined by using a many-body potential fitted to copper. A thermal disorder transition in the GB region occurs well below the melting point. Our results indicate that such a transition is a continuous process and there is no evidence of premelting, which is entirely in accord with experiment results and theoretical prediction.Moreover we also observed that melting initiated at the interface and then propagated into the bulk quickly at or above Tm.
关键词:
moleculandynamics
,
null
,
null
Journal of Physics and Chemistry of Solids
The layered ternary ceramics Ti3SiC2 and Ti3AlC2 are isostructural and can form Ti3Si1-xAlxC2 solid solutions combining the advanced properties of both compounds [H.B. Zhang, Y.C. Zhou, Y.W. Bao, M.S. Li, Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.90Al0.1C2 solid solution, Acta Mater. 52 (2004) 3631-3637; E.D. Wu, J.Y. Wang, H.B. Zhang, Y.C. Zhou, K. Sun, Y.J. Xue, Neutron diffraction studies of Ti3Si0.9Al0.1C2 compound, Mater. Lett. 59 (2005) 2715-2719; J.Y. Wang, Y.C. Zhou, First-principles study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution, J. Phys.: Condens. Matter 15 (2003) 5959-5968; Y.C. Zhou, J.X. Chen, J.Y. Wang, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions, Acta. Mater. 54 (2006) 1317-1322]. In the present work, the solid solutions of Ti3Si1-xAlxC2 (x = 0, 0.25, 0.33, 0.5, 0.67, 0.75, 1) are investigated by first-principle calculations based on pseudo-potential plan-wave method within the density functional theory framework. The results show that as Al content increases in the solid solution, all the bonds have weakened to certain extents, which lead to an unstable structure both energetically and geometrically. The calculated results are compared and discussed with the reported data for the Ti3Si1-xAlxC2 solid solutions. (c) 2007 Elsevier Ltd. All rights reserved.
关键词:
ceramics;ab initio calculations;electronic structure;electrical;conductivity;oxidation behavior;mechanical-properties;ti3sic2;temperature;ti3alc2;air;si
Physics Letters A
The magnetic properties of the mixed ferro-ferrimagnetic compounds with (A(a)B(b)C(c))(y)D, in which A, B, C and D are four different magnetic ions and form four different sublattices, are studied by using the Ising model. And the Ising model was dealt with standard mean-field approximation. The regions of concentration in which two compensation points or one compensation point exit are given in c-a, b-c and a-b planes. The phase diagrams of the transition temperature T-c and compensation temperature T-comp are obtained. The temperature dependences of the magnetization are also investigated. Some of the result can be used to explain the experimental work of the molecule-based ferro-ferrimagnet ((NiaMnbFecII)-Mn-II-Fe-II)(1.5) [Cr-III (CN)6] - zH(2)O. (C) 2003 Elsevier B.V. All rights reserved.
关键词:
mixed ferro-ferrimagnet;Ising model;four sublattices;phase diagram;transition temperature;compensation temperature;magnetic-properties;prussian blue;alloy
Corrosion Science
The oxidation of pure Co and two Co-Y alloys containing 2 at.% and 5 at.% Y has been studied at 600-800 degrees C in air. The oxidation of pure cobalt at all temperatures followed the parabolic rate law. The oxidation of the two alloys approximately followed the parabolic rate law at 800 degrees C, but was closer to cubic behavior at 600 and 700 degrees C except Co-5Y at 600 degrees C, which deviated from the cubic and parabolic rate law. The corrosion of both alloys at the three temperatures produced an external scale containing Co oxides (Co3O4, CoO) and Y2O3 and an internal oxidation region where Co17Y2 was converted into Co and Y2O3. The distribution of Y2O3 closely followed that of the intermetallic compound (Co17Y2) in the original alloy. The corrosion mechanism of the alloys is examined. (C) 1999 Elsevier Science Ltd. All rights reserved.
关键词:
Co;Y;oxidation;high-temperature oxidation;possible scaling modes;internal oxidation;oxidant pressures;h-2-h2s mixtures;sulfidation;oxygen
Oxidation of Metals
The oxidation of Fe- Y alloys containing 2 and 5 at.% Y and pure iron has been studied at 600-800 degrees C in air. The oxidation of pure iron follows the parabolic rate law at all temperatures. The oxidation of Fe-Y alloys at 600 degrees C approximately follows the parabolic rate law, but not at 700 and 800 degrees C, where the oxidation goes through several stages with quite different rates. The oxide scales on Fe-2Y and Fe-5 Y at 700 and 800 degrees C are composed of external pure Fe oxides containing Fe2O3, Fe3O4, and FeO, with FeO being the main oxide and an inner mixture of FeO and YFeO3. The scales on Fe-2Y and Fe-5Y at 600 degrees C consist of Fe2O3, Fe3O4, and Y2O3, with a minor amount of FeO. Significant internal oxidation in both Fe-Y alloys occurred at all temperatures. The Y-containing oxides follow the distribution of the original intermetallic compound phase in the alloys. The effects of Y on the oxidation of pure Fe are discussed.
关键词:
pure Fe;Fe-Y alloys;oxidation;high-temperature oxidation;possible scaling modes;2-phase;binary-alloys;low-oxygen pressures;oxidant pressures
李鹏
,
胡耀波
,
熊惟皓
,
林真
硬质合金
doi:10.3969/j.issn.1003-7292.2000.02.001
研究了稀土元素Y对Ti(C,N)基金属陶瓷微观组织和性能的影响.Y在Ti(C,N)基金属陶瓷中可以起到净化粘结相/硬质相界面的作用,并使其包覆层的厚度略有增加,从而使硬质相颗粒得到细化.当Y含量为0.8wt%时细化效果最明显,此时Ti(C,N)基金属陶瓷的抗弯强度和硬度值最大.
关键词:
稀土元素
,
Y
,
金属陶瓷
,
组织与性能
Journal of Applied Physics
The magnetic properties of R2Co14B1-xCx (x=0, 0.5 and R=Y, Sm) compounds have been studied by measuring the temperature dependence of the easy- and hard-magnetization curves on magnetically aligned samples between 1.5 and 300 K for Y2Co14(B,C) and at 4.2 K for Sm2Co14(B,C). The magnetic anisotropy of Y2Co14B increases due to the substitution of C for B, whereas the saturation magnetization decreases. Between 1.5 and 300 K, the anisotropy field of Y2Co14B0.5C0.5 increases about 2 T and the Co moment decreases about 0.05mu(B). The anisotropy field Of Sm2Co14B also increases upon C substitution and the saturation magnetization decreases slightly. The ac susceptibilities of both SM2Co14B and Sm2Co14B0.5C0.5 exhibit anomalies that may arise from a spin reorientation within the basal plane.
关键词:
nd2fe14b;exchange;nd2co14b;r2fe14b;field
Corrosion Science
The corrosion of pure yttrium and of a cobalt alloy containing approximately 15 wt% yttrium was studied at 600-800 degrees C in H-2-CO2 mixtures providing an equilibrium oxygen pressure of 10(-24) atm at 600 degrees C and 10(-20) atm at 700 and 800 degrees C. The corrosion of yttrium under these low oxygen pressures resulted in the growth of Y2O3 scales which was rather protective at 800 degrees C, presenting two approximately parabolic stages with a smaller rate Constant at longer times, but non-protective and faster at lower temperature. The oxidation of Co-15Y was rather irregular under all conditions, but generally slow: in particular, at 800 degrees C the rate decreased almost to zero after about 17 h oxidation. The oxidation of this alloy produced a thin external layer of pure cobalt metal overlying a region of internal oxidation, where the Y-rich phase was transformed into a mixture of cobalt metal and yttrium oxide. The microstructure of the internal oxidation region followed closely that of the original alloy, while no yttrium depletion was observed beneath the front of internal oxidation. These results are examined by taking into account the low solubility of Y in Co and the existence of an intermetallic compound in the alloy. (C) 1997 Elsevier Science Ltd.
关键词:
cobalt;yttrium;alloys;internal oxidation;2-phase binary-alloys;high-temperature oxidation;most-reactive;component;possible scaling modes;low oxidant pressures;internal;oxidation;a/o al;corrosion;1173-k