YAN Shichun Institute of Solid State Physics
,
Academia Sinica
,
Hefei
,
ChinaOKUDA Shigeo MIZUBA YASHI Haka Institute of Materials Science
,
University of Tsukuba
,
Japan
金属学报(英文版)
The softening of stainless steel 316 of non-detectable difference in magnitude induced by thermal pulse was found during fatigue with strain amplitude of 1.17×10~(-4) in temperature range of 333—573K.And it occurred if the measurements of fatigue with thermal pulse were performed in range of 333—503K.However,it will become of the hardening in range of 503 —573K.The temperature,at which hardening of the steel induced by thermal pulse emerges in fatigue process,increases with the increasing in strain amplitudes.
关键词:
fatigue
,
null
,
null
,
null
,
null
LIU Guoquan Department of Materials Science and Engineering
,
University of Science and Technology Beijing
,
100083
,
China.
材料科学技术(英文)
Quantitative analysis of populations having a geometric structure,which has developed into a special scientific subject called microstructology or stereology,is of great importance to the characterization and evaluation of microstructures and their evolution in various processes.This paper, besides a brief discussion on those topics such as the recent developments of computer assisted image analysis,mathematical morphology,and fractal analysis,will mainly focus on the scope,fundamen- tals,present status,and perspectives of classical stereology.Several case examples of its application to materials science will also be given.
关键词:
stereology
,
null
,
null
,
null
Douxing LI and Hengqiang YE (Laboratory of Atomic imaging of Solids
,
Institute of Metal Research
,
Chinese Academy of Sciences
,
Shenyang
,
110015
,
China)
材料科学技术(英文)
The present paper summarizes the current status of high resolution electron microscopy (HREM)and the applications of HREM to materials science and condensed matter physics. This review recounts the latest development of high resolution electron microscope, progress of HREM and the applications of HREM, including the crystal structure determination of microcrystalline materials and characterization of the local structure of the defects and nanostructured materials as well as qualitative and quantitative analysis of the grain boundaries, interfaces and interfacial reactions in the advanced materials by means of HREM in combination with electron diffraction,subnanometer level analysis, image simulation and image processing.
关键词:
N.V.Ch
,
ra Shekar
,
P.Ch.Sahu
,
K.Govinda Rajan
材料科学技术(英文)
Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperature conditions. In this review, the recent developments in the instrumentation, pressure and temperature measurement techniques, results of experimental investigations from the literature were discussed. Also, the future scope of the technique in various avenues of science was explored.
关键词:
Laser heating
,
null
,
null
,
null
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
The terminology of materials study inspired by biological systems or phenomena is analyzed at first. It is pointed that the term "bio-inspired" may be better than the terms "bionic" or "biomimetic", since the former is relatively easy to be accepted. The new trends of bio-inspired study of structural materials are analyzed in short. Some progress in bio-inspired design and processing of materials in this institute (IMRCAS) are summarized briefly in this talk, such as biomimetic design of worst bonding interface for composites; dumbell-like whiskers simulating animal bone; fractal tree reinforcement by mimicry of branched roots in soil; etc. The possibility of modification and recovery of materials by nonequilibrium bio-inspired treatment are further explored, including the nonequilibrium process under transient heating, dissipative structure and self-organization process of open system, inspiration by living process, influence of high intensive electropulsing on the working Life of materials, a possible way of fatigue recovery of materials and the healing effect of electropulsing in metals. Some tentative practice in biomaterial modification are also studied such as the reformed bamboo reinforced aluminium laminates, etc. A discussion on the methodology of bio-inspired study of materials consists briefly in the last part of the talk. (C) 2000 Elsevier Science S.A. All rights reserved.
关键词:
bio-inspired;bionic;biomimetic;structural materials;composites