TAO Zengyi WANG Aihua ZHU Beidi DENG Shijun CHENG Xudong FU Jiangmin Huazhong University of Science and Technology Wuhan
,
430074
,
ChinaWuhan Research Institute of Material Protection
,
Wuhan
,
430000
,
China
材料科学技术(英文)
An alumina coating was developed on mild carbon steel by plasma spraying and then modified by laser remelting.Some characteristics of plasma sprayed ceramic coating before and after laser remelting,such as microstructure,wear resistance, heat shock resistance,hot corrosion property and bond strength,have been investigated in this paper.
关键词:
plasma spraying
,
null
,
null
Anti-Corrosion Methods and Materials
Purpose - The purpose of this paper is to study the effect of cyclic hydrostatic pressure on the protective performance of cathodic protection (CP) system consisting of Zn-Bi sacrificial anode and Ni-Cr-Mo-V steel. Design/methodology/approach - The anode and cathode polarization curves of the driving potential and current for CP were investigated in case of cyclic hydrostatic pressure (0-3.5 MPa) and compared with that at atmospheric pressure. The morphologies of the anode material with and without corrosion products were observed by scanning electron microscopy. Findings - The experimental results revealed that the cyclic hydrostatic pressure had significant influence on the CP system. The anode potential instantaneously responded to the cyclic hydrostatic pressure and the discharge performance decreased due to the deposition of corrosion product. Also, the CP system exhibited higher slope parameter under cyclic hydrostatic pressure, indicating that the CP system cannot provide adequate protection for Ni-Cr-Mo-V steel. Originality/value - The results presented in this paper clearly show the effect of cyclic hydrostatic pressure on the sacrificial anode CP system, and present a foundation for further research on the practical application of sacrificial anode under cyclic hydrostatic pressure environment.
关键词:
Cathodic protection;Zn-Bi sacrificial anode;Cyclic hydrostatic;pressure;Circuit current;Slope parameter;Hydrostatics;part 2;polarization;seawater;steel
Shijie Zhang
材料科学技术(英文)
Considering the unique properties of small spacecraft, such as light weight, low power-consumption and high heat flux density, a new kind of lightweight boron carbide (B4C) radiation-protection coating material was proposed. New techniques for preparing LSMO thermal control coating and B4C radiation-protection coating were developed. The sample piece of multi-functional structure was manufactured by using the proposed materials, and a series of performance tests, such as thermal control and radiation-protection behaviors were evaluated. Test results show that: the emissivity of the multi-functional structure varies from 0.42 to 0.86 at 240 K to 353 K and the phase transition temperature is about 260 K. The electron radiation-protection ability of the multi-functional structure is 3.3 times better than that of Al material. The performance index of this multi-functional structure can meet the requirements for space application in on-board electronic equipment.
关键词:
Coating material
MA Zongyi YAO Zhongkai Harbin Institute of Technology
,
Harbin
,
China
金属学报(英文版)
The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the strength and ductility of the composite from 582 MPa as squeeze casted up to 639 MPa,and on the transformation from isotropic to the anisotropic structure.This seems to be explained by the orientation of whiskers and the densification of dislocations in matrix.TEM observation indicates that the stacking fault is the usual planar defect on the SiC_w surface. composite;;SiC whisker;;Al alloy;;microstructure
关键词:
composite
,
null
,
null
,
null
Materials and Corrosion-Werkstoffe Und Korrosion
In order to investigate the galvanic anodic protection (GAP) of ferrous metals (such as 410, 304 and 316 stainless steels) in acid solutions by doped polyaniline (PANi), separate doped PANi powder-pressed electrodes with different surface areas (the area ratio of the PANi electrode to stainless steel is between 1:1 and 1:2) have been prepared. These were coupled with ferrous metal in the following solutions: 5 M sulphuric acid, 5 M phosphoric acid and industrial phosphoric acid (containing 5 M phosphoric acid and 0.05% chloride ion) to construct a galvanic cell, in which PANi is cathode while ferrous metal is anode. The results indicate that a PANi electrode with sufficient area can provide corrosion protection to stainless steel in these acidic solutions. A pilot scale coupling experiment was carried out. The results indicate that PANi is a promising material as an electrode for the anodic protection of ferrous metals in acidic solutions in industrial situations.
关键词:
conducting polymer-coatings;corrosion protection;stainless-steel;spectroscopy;passivation;performance;mechanism;behavior;primers;films