欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(515)
  • 图书()
  • 专利()
  • 新闻()

EFFECT OF MAGNETIC FIELD ON MARTENSITIC TRANSFORMATION IN Fe-21Ni-4Mn ALLOY

SUN Enxi Dalian Railway College , Dalian , ChinaYANG Dazhi Dalian University of Technology , Dalian , ChinaXU Zuyao (T.Y.Hsu) Shanghai Jiaotong University , Shanghai , ChinaYANG Fuming ZHAO Ruwen Institute of Physics , Academia Sinica , Beijing , China YANG Dazhi , Professor , Dalian University of Technology , Dalian 116024 , China

金属学报(英文版)

The pulsed magnetic field induced martensitic transformation with isothermal and athermal kinetics in Fe-2Ni-4Mn(wt-%)alloy has been studied by means of magnetization measurements,optical microscopy and thermodymical analyses.It is shown that there exits a critical magnetic intensity for induing martensitic transformation at a given temperature above Ms.The critical magnetic field increases linearly with increasing ΔT= T-M_S.The magnetic field strongly promotes the athermal martensitic transforamtion and restrains the isothermal one.The entropy change ΔS for athermal transformation at Ms is 4.13 J/mol· K.The effect of magnetic field on martensitic transformation in Fe-21Ni-4Mn alloy is main- ly due to Zeeman effect.Lath,plate and butterfly martensities were observed under magnetic field.

关键词: magnetic field-induced martensitic transformation , null , null

Titanium technology in the USA - an overview

D.Eylon , S.R.Seagle

材料科学技术(英文)

The state of Ti research, development and industry is reviewed in this article. The fifty-year anniversary of Ti technology commercialization in the USA provides an opportunity for a historical perspective. Incorporation of "information-age" tools into alloy development, processing, and production invigorates the technology. Consolidation, diversification and globalization have been transforming the Ti industry in the recent years.

关键词:

CORRELATION BETWEEN STRESS COMPONENTS AND STRESS CORROSION CRACKS IN BRASS Lecturer,Department of Materials Physics,University of Science and Technology Beijing,Beijing 100083,China

QIAO Lijie LIU Rui XIAO Jimei University of Science and Technology Beijing , Beijing , China

金属学报(英文版)

The effects of stress components on nucleation sites and propagation directions of stress cor- rosion cracks in brass were investigated with specimens under mode Ⅱ and mode Ⅲ loadings. The results indicated that under mode Ⅱ loading,stress corrosion cracks nucleated on the site with maximum normal stress component and propagated along the plane perpendieular to the maximum normal stress,under mode Ⅲ loading,the stress corrosion crack was not evident on the 45°plane due to the general corrosion in aqueous solution with high NH_4OH concentra- tion,while stress corroded in aqueous solution with low NH_4OH concentration, numerous cracks with spacings of 10—150μm were found on the 45°plane with maximum normal stress and no stress corrosion cracks was observed on the plane with maximum shear stress.

关键词: stress corrosion cracking , null , null , null

Development and application of universal formability technology

Yanwu Xu

材料科学技术(英文)

Using mathematical plasticity theories, universal formability (UF) technology has been developed and applied in the automotive stamping engineering and production. As a formability analysis tool, this technology is the major methodology for the development of stamping expert system (solution provider) for (a) product design and feasibility analysis, (b) material automatic selection using nomograms, (c) draw die design using pre-models, and (d) UF and robustness analysis of die performance in finite element analysis (FEA) environment.

关键词:

Residual Stresses in Coating Technology

G.Montay , A.Cherouat , A.Nussair , J.Lu

材料科学技术(英文)

Residual stress in coatings is the result of individual particle stress. Their effects may be either beneficial or detrimental, depending upon the magnitude, sign and distribution of the stresses with respect to the external load. Tensile stress which exceeds the elastic limit causes cracking in surface coatings or at the interface between the substrate and the coat. Compressive stress, in general, has a beneficial effect on the fatigue life, crack propagation, coating adhesion and on the durability of the top coat during service. Compressive residual stresses can increase the number of cycles before crack initiation begins through a mean stress effect. Temperature gradients which occur during solidification and subsequent cooling are the principal mode of internal stresses generation. Some parameters influence the residual stress field of both the coating and the substrate. Substrate nature, spraying temperature, thickness of the coat layer, substrate preparation (grit blasting conditions), and velocity of the splats are in the relation with the quality of the coating. In this work, we will describe the role playing by the ceramics coating elaboration on the residual stress gradient in depth of the component. The incremental hole drilling technique has been developed to determine the residual stress gradient in depth of the coat and substrate which must be used with particularly conditions. This new technology has been employed on zirconia, alumina and tungsten carbide plasma sprayed coating.

关键词: Coating , null , null , null

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共52页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词