Junbao ZHANG
,
Guangwu WEN
,
Tingquan LEI
,
Dechang JIA
,
Jiancun RAO
材料科学技术(英文)
Si-B-O-N powder without B-O bonds synthesized by polymeric precursor were hot-pressed into ceramics at different temperatures. The variations of microstructure and mechanical properties of Si-B-O-N ceramics have been investigated. Crystallization of Si-B-O-N ceramics occurred at about 1400°C. Density, elastic modulus, and flexural strength of the ceramics increased with the increasing sintering temperatures, and reached to their maximum values at 1600°C. By contrast,hardness and fracture toughness of the ceramics monotonically changed with increasing sintering temperatures. Hardness decreased, while the fracture toughness increased. The principal toughening mechanisms including crack deflection, crack bridging and plate grain pulling-out effects are discussed
关键词:
Si-B-O-N ceramics
,
null
,
null
,
null
Junbao ZHANG
,
Tingquan LEI
,
Guangwu WEN
,
Yu ZHOU
材料科学技术(英文)
Amorphous silicon oxynitride powders have been obtained by pyrolysis of polysiloxazane in a stream of anhydrous NH3 at the temperature up to 1000℃. The polysiloxazane is fabricated from ammonolysis of chloropolysiloxane that is produced by the hydrolysis of silicon tetrachloride. The conversion of polysiloxazane to silicon oxynitride and the structural features of the final powders have also been studied by infrared spectra, elemental composition and X-ray diffraction analysis and SEM observation.
关键词:
Journal of Materials Research
The morphology of the dark and bright regions observed by transmission electron microscopy for the Zr(64.13)Cu(15.75)Ni(10.12)Al(10) bulk metallic glass strongly depends on the ion beam parameters used for ion milling. This indicates that the ion beam could introduce surface fluctuation to metallic glasses during ion milling.
关键词:
room-temperature
Philosophical Magazine
The error of Equation (15b) in my article [Z.D. Zhang, Phil. Mag. 87 (2007) p.5309] in the application of the Jordan-Wigner transformation does not affect the validity of the putative exact solution, since the solution is not derived directly from that equation. Other objections of Perk's comment [J.H.H. Perk, Phil. Mag. 89 (2009) p.761] are the same as those in Wu et al.'s comments [F.Y. Wu et al., Phil. Mag. 88 (2008) p.3093; p.3103], which do not stand on solid ground and which I have sought to refute in my previous response [Z.D. Zhang, Phil. Mag. 88 (2008) p.3097]. The conjectured solution can be utilized to understand critical phenomena in various systems, whereas the conjectures are open to rigorous proof.
关键词:
3D Ising model;exact solution;conjecture;critical phenomena;ferromagnetism;magnetic phase transition;model;analyticity
中国腐蚀与防护学报
N。1Atmospheric Corrosivlty for Steels………………………………………………… .LIANG Caideng HO[I i。-tat(6)Caustic Stress Corrosion Cr。king of Alloy 800 Part 2.The Effect of Thiosul执e……………………………………… KONG De-sheng YANG Wu ZHAO Guo-zheng HUANG De.ltL。ZHANG Yu。。he CHEN She。g-bac(13)SERS slid E16CttOCh6iniC81 Stlldy Of Illhibit1Oli M6ch&tllsth Of ThlollY68 Oil ITOll ID H....
关键词:
Physics Letters A
In a magnetic system, consistent with Griffiths analyticity requirements one can parameterize the equation of state near criticality by writing H = r(beta delta)h(theta), T = rt(theta) and the magnetization M = r(beta)m(theta), where T is measured from the critical temperature. For the insulating ferromagnet CrBr(3), the experimental data of Ho and Litster [J.T. Ho, J.D. Litster, Phys. Rev. Lett. 22 (1969) 6031 is well fitted by m(theta) as a linear function of theta [P. Schofield, J.D. Litster, J.T Ho, Phys. Rev. Lett. 23 (1969) 1098]. Also Ho and Litster give beta = 0.368, gamma = 1.215 and delta = 4.3. Those critical experiments are very close to the recent 31) king results of Zhang [Z.D. Zhang, Philos. Mag. 87 (2007) 5309], namely beta = 3/8, gamma = 5/4 and delta = 13/3. We therefore predict that m(theta) will be proportional to theta as a fingerprint of the 3D Ising Hamiltonian. (C) 2009 Elsevier B.V. All rights reserved.
关键词:
Critical-point effects;Critical exponents;Ising model;Criticality;Ferromagnet;Magnetic equation of state;critical exponents