{"currentpage":1,"firstResult":0,"maxresult":10,"pagecode":5,"pageindex":{"endPagecode":5,"startPagecode":1},"records":[{"abstractinfo":"采用冷喷涂技术在铝基板上制备了Cu-Al2O3复合涂层,以复合涂层为催化荆进行了甲醇水蒸气重整制氢实验,并利用扫描电镜、能谱分析仪和X射线衍射仪对实验前后的涂层进行了表征.结果表明,涂层之间和涂层与基板问的结合主要为机械咬合,孔隙率较高,与喷涂颗粒相比,涂层没有相的变化;喷涂后Al2O3颗粒发生了破碎,而Cu颗粒变形不充分,Cu颗粒特性导致涂层中铜含量比粉末中的低;甲醇水蒸气重整制氢实验表明,Cu-Al2O3复合涂层由于含氧高而具有比纯铜涂层更好的稳定性.","authors":[{"authorName":"王锋","id":"c039d583-b61c-4e1f-8e1e-e4dd8d7c0ca7","originalAuthorName":"王锋"},{"authorName":"漆波","id":"2026a0c3-6bcd-4dff-bec5-91c34a3c93eb","originalAuthorName":"漆波"},{"authorName":"陈清华","id":"7b340f28-7c8a-4fb1-85cc-d21fe606ac72","originalAuthorName":"陈清华"},{"authorName":"崔文智","id":"baa5a1ab-7ab8-49dd-a366-1b6d3d4e8f62","originalAuthorName":"崔文智"},{"authorName":"李隆键","id":"cbaf22c2-885f-4c3d-be8c-b08683140ce4","originalAuthorName":"李隆键"},{"authorName":"梁大镁","id":"50d6583b-fd68-4142-8815-a2c1777147bc","originalAuthorName":"梁大镁"}],"doi":"","fpage":"47","id":"23b5464c-216c-4a55-a250-41908189098c","issue":"12","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"cd242826-36b7-4d23-8713-422b7f0eb0f2","keyword":"冷喷涂","originalKeyword":"冷喷涂"},{"id":"13340228-2b47-44cd-aba5-13989901db87","keyword":"Cu-Al2O3","originalKeyword":"Cu-Al2O3"},{"id":"097aec06-cd93-4973-85db-497d66e469a2","keyword":"功能涂层","originalKeyword":"功能涂层"},{"id":"7a5a52b3-5811-42b0-aeb7-51bb9178adcd","keyword":"制氢","originalKeyword":"制氢"},{"id":"b229a6c5-bf19-4193-b089-d26f622a0736","keyword":"甲醇重整","originalKeyword":"甲醇重整"}],"language":"zh","publisherId":"cldb200912015","title":"超音速冷喷涂Cu-Al2O3复合涂层特性","volume":"23","year":"2009"},{"abstractinfo":"为研究强风、干寒、大温差地区混凝土箱梁早期抗裂性能,对施工现场可行的养护方式进行了抗裂性能及强度对比,最终在现场选择蒸汽养护进行混凝土箱梁养护.为进一步明确在蒸汽养护下混凝土箱梁的早期抗裂性,对箱梁水化热温度场和早期混凝土收缩应变进行了测试,最终明确在大温差、强风、干寒地区不稳定的蒸汽养护下条件下混凝土箱梁在早期水化热及收缩作用下不产生裂缝,同时给出了混凝土水化热的分布规律以及收缩应力分布规律.","authors":[{"authorName":"赵文斌","id":"b8e24b77-1f45-413f-9c7c-c40923772d26","originalAuthorName":"赵文斌"},{"authorName":"刘建勋","id":"493cbf6a-9493-48e2-a6b4-60ea2e08067e","originalAuthorName":"刘建勋"},{"authorName":"张戎令","id":"d2f4b159-c90e-4144-82c8-519d9810a1bf","originalAuthorName":"张戎令"},{"authorName":"孙照玉","id":"6d930de9-14e1-4faa-878c-6b2f165c6754","originalAuthorName":"孙照玉"},{"authorName":"康健","id":"aac68a20-8a62-468c-ac72-033e8f3fd1aa","originalAuthorName":"康健"}],"doi":"","fpage":"3253","id":"bfb94786-127d-4725-808a-6cb6e864ec8a","issue":"10","journal":{"abbrevTitle":"GSYTB","coverImgSrc":"journal/img/cover/GSYTB.jpg","id":"36","issnPpub":"1001-1625","publisherId":"GSYTB","title":"硅酸盐通报 "},"keywords":[{"id":"e59a763b-a8ab-469d-bd8d-452612fd7a25","keyword":"强风干寒","originalKeyword":"强风干寒"},{"id":"bafb601a-2854-4eec-9904-0b75847a053b","keyword":"混凝土箱梁","originalKeyword":"混凝土箱梁"},{"id":"0574bf40-b865-4be6-b984-91291b24175c","keyword":"早期裂缝","originalKeyword":"早期裂缝"},{"id":"c8cfef92-c513-400c-8ea1-378fd876fb74","keyword":"水化热","originalKeyword":"水化热"}],"language":"zh","publisherId":"gsytb201610029","title":"强风、干寒、大温差地区混凝土箱梁早期抗裂性分析","volume":"35","year":"2016"},{"abstractinfo":"本工作研究大跨径钢箱梁桥面锌涂层腐蚀规律.采用电化学工作站研究粘结层在完好状态、嵌入刻划破损和电化学剥离破损时锌涂层腐蚀阻抗、极化曲线和腐蚀电位变化,用扫描电镜观察界面腐蚀形貌,用X射线衍射仪分析腐蚀产物等腐蚀规律,采用伺服试验机对铺装层体系进行剪切试验.试验结果表明,腐蚀介质通过沥青混凝土铺装层-沥青粘结层-防腐蚀涂层体系腐蚀锌涂层,沥青粘结层嵌入刻划破损下锌涂层腐蚀明显高于粘结层剥离破损.粘结层-锌涂层之间存在界面腐蚀,使沥青混凝土铺装的抗剪切结合力下降50%以上,界面锌涂层腐蚀产物主要有znO、Zn5(CO3)2(OH)6、Zn5(OH)8Cl2H2O等,锌的腐蚀速度受电荷传递和离子扩散控制,界面锌涂层腐蚀为车载下的桥面沥青混凝土铺装局部位移和开裂创造了条件.","authors":[{"authorName":"沈承金","id":"db468a13-6509-4fef-bde3-baf1e484c37d","originalAuthorName":"沈承金"},{"authorName":"明图章","id":"d6d983e8-de3b-4037-9925-665f29383dda","originalAuthorName":"明图章"},{"authorName":"张健康","id":"d44f0334-d0a5-4fb6-9d4d-e3477eec7ee1","originalAuthorName":"张健康"},{"authorName":"胡光伟","id":"9bb296b8-0f98-4f37-b504-84cb2088044d","originalAuthorName":"胡光伟"},{"authorName":"汪洋","id":"c2efabcd-7355-4d28-b755-59d0c8b44e76","originalAuthorName":"汪洋"},{"authorName":"王夫顺","id":"f3e69717-8d22-4e2d-8771-30ea6735d9dc","originalAuthorName":"王夫顺"}],"doi":"","fpage":"434","id":"ae6e7734-6440-4b93-a01a-d919246bbafc","issue":"8","journal":{"abbrevTitle":"FSYFH","coverImgSrc":"journal/img/cover/FSYFH.jpg","id":"25","issnPpub":"1005-748X","publisherId":"FSYFH","title":"腐蚀与防护"},"keywords":[{"id":"f274a183-cf52-4d12-b894-1b957d2b14c3","keyword":"钢桥","originalKeyword":"钢桥"},{"id":"323a0811-9b9d-4e9a-9e7b-a33cb5473038","keyword":"面铺装层","originalKeyword":"面铺装层"},{"id":"3a98c0f4-9c02-40f0-9bf1-3b80ae719656","keyword":"锌涂层","originalKeyword":"锌涂层"},{"id":"099cdf68-4d83-4a0a-ace8-0448d84e989a","keyword":"腐蚀","originalKeyword":"腐蚀"}],"language":"zh","publisherId":"fsyfh200808002","title":"大跨径钢箱梁桥面铺装层下喷锌涂层腐蚀行为","volume":"29","year":"2008"},{"abstractinfo":"重庆轻轨较新线一期工程中,位于杨家坪毛线沟的大跨度倒T型PC轨道梁,由于环境条件的局限,不能采用预制轨道梁,要求进行高精度现浇混凝土施工生产,由此对混凝土提出较高的要求,如果仅采用普通混凝土则难以满足要求.所以在该工程中,利用工程常用材料,通过对原材料质量的严格控制,在胶凝材料中掺用10%~13%的磨细矿渣粉,生产C60高性能混凝土,该混凝土具有良好的工作性,28天混凝土的实际抗压强度为94.4MPa,1年的实际抗压强度为123.0 MPa.","authors":[{"authorName":"吴建华","id":"47704c80-f193-4cc3-b187-148335b789b9","originalAuthorName":"吴建华"},{"authorName":"刘芳","id":"a7be32c1-33d6-4d2f-8674-04688495431f","originalAuthorName":"刘芳"},{"authorName":"陈剑雄","id":"0045d38a-3911-49f1-8c02-6d7df86f1470","originalAuthorName":"陈剑雄"},{"authorName":"万朝均","id":"66d6418f-7b9b-4c9b-857a-7abd03975bc8","originalAuthorName":"万朝均"},{"authorName":"陈寒斌","id":"9bf707b0-2e2b-4d34-b553-1b8c674d3833","originalAuthorName":"陈寒斌"},{"authorName":"王于益","id":"905d8cff-e7c2-4985-8cb4-50a6d3130191","originalAuthorName":"王于益"}],"doi":"","fpage":"507","id":"dd169f28-efbf-4b1b-bfb1-39b9937ffbbc","issue":"z2","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"3ae668e9-f111-47a4-b92c-830f5a4d0f36","keyword":"磨细矿渣粉","originalKeyword":"磨细矿渣粉"},{"id":"d658d425-3c79-4e3d-b41e-155d8d085199","keyword":"高性能混凝土","originalKeyword":"高性能混凝土"},{"id":"7ba518e7-5d1f-48fa-a1a8-1474e4be74c2","keyword":"大跨度倒T型PC轨道梁","originalKeyword":"大跨度倒T型PC轨道梁"},{"id":"644b0870-bde4-4403-9cc8-951f0dfa4c74","keyword":"抗压强度","originalKeyword":"抗压强度"},{"id":"94387160-8b3c-4044-b8e7-5e12c0dde979","keyword":"弹性模量","originalKeyword":"弹性模量"}],"language":"zh","publisherId":"cldb2007z2185","title":"磨细矿渣粉在重庆轻轨大跨倒T梁高性能混凝土中的应用","volume":"21","year":"2007"},{"abstractinfo":"钢桥面防腐蚀涂层介于钢箱梁桥面板与桥面沥青铺装层2种完全不同的材料之间,既是钢桥面的防腐蚀涂层、防水涂层,又是二者的连接层.因此,对该防腐蚀涂层的腐蚀失效问题及其对钢桥面沥青混凝土铺装层弱化的影响规律进行研究具有实际意义.通过电化学腐蚀试验、涂层结合力试验、XRD分析等方法,研究了在环氧沥青和改性沥青混凝土2种钢桥面铺装层下的无机富锌、环氧富锌和电弧喷锌涂层的腐蚀性能以及涂层与钢桥面板间结合性能,考察了涂层腐蚀对桥面铺装层抗剪切性能的影响.结果表明:喷锌防腐蚀涂层与桥面板之间的结合力受制于钢板除锈预处理方式,喷砂处理的涂层结合力优于抛丸处理;铺装层的抗剪切能力受防腐蚀涂层腐蚀产物影响,锌系涂层的可溶性腐蚀产物破坏了钢桥面铺装体系界面的连续性,锌系涂层腐蚀使铺装层抗剪切强度下降1倍左右,喷锌涂层腐蚀对铺装层结合性能的影响大于富锌涂料涂层.","authors":[{"authorName":"沈承金","id":"9064f325-587c-47c8-a9b8-8f544a0b3207","originalAuthorName":"沈承金"},{"authorName":"明图章","id":"c67173a6-0494-4bcc-bcef-0825f4135ba1","originalAuthorName":"明图章"},{"authorName":"张健康","id":"712144e2-3171-4a4b-9755-5a42064ad849","originalAuthorName":"张健康"},{"authorName":"胡光伟","id":"6ace79a8-b597-4854-bb4d-1417c330e75f","originalAuthorName":"胡光伟"},{"authorName":"汪洋","id":"719abacf-3731-426b-8483-40c0c3eae4d3","originalAuthorName":"汪洋"}],"doi":"","fpage":"58","id":"723ef200-b179-4fc1-a430-14f1100a9b77","issue":"8","journal":{"abbrevTitle":"CLBH","coverImgSrc":"journal/img/cover/CLBH.jpg","id":"7","issnPpub":"1001-1560","publisherId":"CLBH","title":"材料保护"},"keywords":[{"id":"1eacdb40-c785-4edd-8dd5-73c13b91d77c","keyword":"钢桥面","originalKeyword":"钢桥面"},{"id":"e541088e-ab89-4275-b380-45a02005b49b","keyword":"防腐蚀","originalKeyword":"防腐蚀"},{"id":"ac9bec94-1fba-44ba-9b99-56a37d08cac1","keyword":"锌涂层","originalKeyword":"锌涂层"},{"id":"402e5cd4-7182-456b-8fe1-9670dc57ac6e","keyword":"界面腐蚀","originalKeyword":"界面腐蚀"}],"language":"zh","publisherId":"clbh200808019","title":"大跨径钢箱梁桥面锌系防腐蚀涂层研究","volume":"41","year":"2008"},{"abstractinfo":"采用优质电熔高钙低硅镁砂,添加复合外加剂,用复合有机结合剂结合,制成了镁质大砖.介绍了该大砖的整体吊装法和炉帽外装法两种砌筑工艺.与普通镁碳砖相比,使用镁质大砖可以极大地减轻工人的劳动强度,缩短筑炉时间,保证炉役后期炉膛的规则性,有利于提高转炉炉龄,提高炉子作业率,降低生产成本.","authors":[{"authorName":"郭宝琦","id":"08a785ec-bef5-4758-9300-211c93cfd3fb","originalAuthorName":"郭宝琦"},{"authorName":"郑伟贤","id":"af594ef3-7c3d-4c09-8fa8-c0d3e763d56c","originalAuthorName":"郑伟贤"},{"authorName":"毛喜民","id":"68df6503-cfb6-4717-b5b7-7c83b5452d70","originalAuthorName":"毛喜民"},{"authorName":"侯振东","id":"37c596dc-1a74-4f73-b5be-f9730ba2a5e5","originalAuthorName":"侯振东"},{"authorName":"张志明","id":"11171b5d-db60-49b6-9bee-b139259c16f8","originalAuthorName":"张志明"},{"authorName":"程晓文","id":"2f669659-4b9c-4ae2-90ab-fb85105dee51","originalAuthorName":"程晓文"},{"authorName":"刘志明","id":"0c663c63-352f-4b77-9914-5487aa3e0210","originalAuthorName":"刘志明"}],"doi":"10.3969/j.issn.1001-1935.2001.03.015","fpage":"163","id":"03abd976-084a-491b-9d55-f956b7963ef3","issue":"3","journal":{"abbrevTitle":"NHCL","coverImgSrc":"journal/img/cover/NHCL.jpg","id":"55","issnPpub":"1001-1935","publisherId":"NHCL","title":"耐火材料 "},"keywords":[{"id":"7276a452-c61a-49bd-aa6c-a47a29f569b6","keyword":"转炉","originalKeyword":"转炉"},{"id":"e13d158a-fc2d-41bb-b11f-bcdf8379a2e7","keyword":"炉衬","originalKeyword":"炉衬"},{"id":"f9262b30-4824-4c6e-8b78-c2b0ebec1d92","keyword":"镁质大砖","originalKeyword":"镁质大砖"},{"id":"0d879503-8270-4d36-a0c0-99ce2b52fc9d","keyword":"砌筑工艺","originalKeyword":"砌筑工艺"}],"language":"zh","publisherId":"nhcl200103015","title":"转炉炉衬用镁质大砖的生产与应用","volume":"35","year":"2001"},{"abstractinfo":"综述了目前大塑性变形(SPD)制备铝、镁基颗粒增强复合材料工艺的研究进展;总结了在SPD过程中复合材料增强颗粒的细化、再分布及基体合金晶粒的超细化等组织演变特点;分析了经SPD加工后铝、镁基颗粒增强复合材料的强韧化机制以及其力学性能的提升空间.最后指出了SPD制备颗粒增强复合材料尚存在的问题及可能的发展方向.","authors":[{"authorName":"廖文骏","id":"eb702c6e-b145-4b7d-bd3a-b58da2aa3e54","originalAuthorName":"廖文骏"},{"authorName":"王渠东","id":"76b2e9d9-e865-4f30-ab4a-15e597999520","originalAuthorName":"王渠东"},{"authorName":"郭炜","id":"17e0cb20-84e9-49e7-82a7-7fb75cca1fc4","originalAuthorName":"郭炜"},{"authorName":"张利","id":"827fe7a1-3b55-4af7-9648-2af297313036","originalAuthorName":"张利"},{"authorName":"周浩","id":"7f1c0fda-c1b7-4062-aac9-e89e00b6c13f","originalAuthorName":"周浩"}],"doi":"10.11896/j.issn.1005-023X.2015.09.006","fpage":"44","id":"5302b24b-e37f-4ac4-8f1a-b3a0ffa52ff6","issue":"9","journal":{"abbrevTitle":"CLDB","coverImgSrc":"journal/img/cover/CLDB.jpg","id":"8","issnPpub":"1005-023X","publisherId":"CLDB","title":"材料导报"},"keywords":[{"id":"16524bb6-aca6-4396-84bc-8d51ab3d12e5","keyword":"大塑性变形","originalKeyword":"大塑性变形"},{"id":"0ab4ac10-8566-4254-ab43-7b3d5f2d6fa1","keyword":"镁合金","originalKeyword":"镁合金"},{"id":"a71c2947-6678-4fb7-9e42-5eaf081b288d","keyword":"铝合金","originalKeyword":"铝合金"},{"id":"568ac125-1a0e-4bc4-bca5-c0aba31045ba","keyword":"颗粒增强复合材料","originalKeyword":"颗粒增强复合材料"},{"id":"a44787c0-3835-41e2-bc36-23b6d80e85bf","keyword":"超细晶","originalKeyword":"超细晶"}],"language":"zh","publisherId":"cldb201509006","title":"大塑性变形制备铝、镁基颗粒增强复合材料的研究进展","volume":"29","year":"2015"},{"abstractinfo":"随着功能梯度梁的跨高比从小(厚梁)变到大(薄梁),梁的变形受到剪切变形的影响就会从大变到小.为了准确分析功能梯度梁的变形,跨高比小的厚梁采用Timoshenko梁模型,而跨高比大的薄梁采用Euler-Bernoulli梁模型.采用这两种梁模型进行功能梯度梁自由振动的有限元计算,分析单元刚度矩阵、质量矩阵和模态阵型等存在的差异.通过数值算例,研究了这两种梁模型的差异对模态应变能法的损伤识别指标的影响.对于厚梁,Timoshenko梁模型的损伤指标优于Euler-Bernoulli梁模型;对于很薄的梁(例如,l/h=25时的薄梁),Euler-Bernoulli梁模型的损伤指标优于Timoshenko梁模型.","authors":[{"authorName":"岳世燕","id":"850ed8f3-8107-46dc-ab00-a5c3e752a86e","originalAuthorName":"岳世燕"},{"authorName":"杨真真","id":"13d89100-01dd-467e-a230-6a8f7d965719","originalAuthorName":"杨真真"},{"authorName":"谢峰","id":"d8b17c64-6721-4fec-8733-906b818c886a","originalAuthorName":"谢峰"},{"authorName":"黄立新","id":"aeeb5c1b-c307-4acf-a991-a74aa315cde7","originalAuthorName":"黄立新"}],"doi":"","fpage":"38","id":"953b5b8a-7d88-4bc5-beb3-4693e5c5d61a","issue":"2","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"9008276c-f829-4584-a97a-3c43c3979524","keyword":"功能梯度材料","originalKeyword":"功能梯度材料"},{"id":"214c7c07-deb2-4fb0-a62a-b383e440b012","keyword":"Euler-Bernoulli梁模型","originalKeyword":"Euler-Bernoulli梁模型"},{"id":"403471ea-15ed-492b-b95b-9d4ce10cc99e","keyword":"Timoshenko梁模型","originalKeyword":"Timoshenko梁模型"},{"id":"d5f53043-fd16-4b3e-882a-4346aec1ef15","keyword":"模态应变能","originalKeyword":"模态应变能"},{"id":"485091e3-75fa-4196-9b35-2a86c932c06a","keyword":"损伤识别","originalKeyword":"损伤识别"}],"language":"zh","publisherId":"blgfhcl201702007","title":"基于模态应变能法功能梯度Euler-Bernoulli梁和Timoshenko梁模型对损伤识别的影响分析","volume":"","year":"2017"},{"abstractinfo":"通过4根BFRP筋再生混凝土梁和4根钢筋再生混凝土梁,对比分析在加载过程中的挠度变化情况.试验结果表明,在相同荷载作用下,BFRP筋再生混凝土梁的挠度比钢筋再生混凝土梁的挠度大;但BFRP筋再生混凝土梁的延性比钢筋再生混凝土梁的延性差.随着截面高度和配箍率的增大,试验梁的挠度均减小.参照不同的混凝土结构设计规范进行挠度计算,计算结果表明,在试验梁处于正常使用阶段时,计算值与试验值吻合良好.","authors":[{"authorName":"吴庆锋","id":"15848c55-3d74-4bcb-b9fb-04eeed25cf2b","originalAuthorName":"吴庆锋"},{"authorName":"刘华新","id":"cae6ba62-67a7-4f1f-93f0-dc5716b742d6","originalAuthorName":"刘华新"}],"doi":"","fpage":"26","id":"842b34ab-0480-4f52-878c-bc94eac51870","issue":"7","journal":{"abbrevTitle":"BLGFHCL","coverImgSrc":"journal/img/cover/BLGFHCL.jpg","id":"6","issnPpub":"1003-0999","publisherId":"BLGFHCL","title":"玻璃钢/复合材料"},"keywords":[{"id":"0b10be88-cda7-44c9-a94a-a4be26019c4e","keyword":"玄武岩纤维筋","originalKeyword":"玄武岩纤维筋"},{"id":"656686b5-ff45-4777-ac56-6a2b948137a1","keyword":"再生混凝土","originalKeyword":"再生混凝土"},{"id":"abe2abcc-5680-4ad2-9a96-0ced5d99d3d4","keyword":"挠度","originalKeyword":"挠度"},{"id":"973b9197-eab5-4bb8-8c22-50d94fc91aa4","keyword":"延性","originalKeyword":"延性"}],"language":"zh","publisherId":"blgfhcl201607005","title":"BFRP筋再生混凝土梁挠度试验研究","volume":"","year":"2016"},{"abstractinfo":"通过X射线衍射分析、金相分析和力学性能测试对大尺寸ZK60镁合金挤压型材的微观组织、织构取向和室温力学性能进行系统研究.结果显示,挤压态ZK60镁合金中主要由a-Mg和MgZn2相组成,此外还有少量的Mg2Zn11和Zn2Zr3相.挤压变形后初始的粗大铸态组织沿着挤压方向被极大地细化和破碎,同时伴有部分动态再结晶发生.大部分晶粒的基面沿着挤压方向和横向排列而不是常规的挤压纤维状取向分布.沿着45°方向取样展现出最好的断裂伸长率,其中间和边部分别为28%和23%,而最大抗力强度则体现在沿着挤压方向拉伸样品在中间和边部分别为325和312MPa.","authors":[{"authorName":"黎小辉","id":"4a5f5f48-9913-45c1-aa63-2fbfa3a2aabf","originalAuthorName":"黎小辉"},{"authorName":"冯晓伟","id":"ddbbdee3-9d06-4c6f-9316-30800f824504","originalAuthorName":"冯晓伟"},{"authorName":"王顺成","id":"143c95f5-41fe-4f18-b215-beec4763a6a7","originalAuthorName":"王顺成"},{"authorName":"戚文军","id":"926f47b0-710e-4a8a-88c6-ba42a713b127","originalAuthorName":"戚文军"}],"doi":"","fpage":"2927","id":"5ee589aa-e497-42ea-9d17-aaf426c76216","issue":"12","journal":{"abbrevTitle":"XYJSCLYGC","coverImgSrc":"journal/img/cover/XYJSCLYGC.jpg","id":"69","issnPpub":"1002-185X","publisherId":"XYJSCLYGC","title":"稀有金属材料与工程"},"keywords":[{"id":"258e2d92-9abd-4cdf-82c4-07eac1924c80","keyword":"ZK60镁合金","originalKeyword":"ZK60镁合金"},{"id":"75446f3a-b7dd-47a8-9e18-48fc0ca94a24","keyword":"挤压型材","originalKeyword":"挤压型材"},{"id":"b3628ac3-fc3f-4978-b15f-b0b3c54bf38d","keyword":"微观组织","originalKeyword":"微观组织"},{"id":"0ed9be4b-ef43-4001-bb57-e21050d6c36a","keyword":"力学性能","originalKeyword":"力学性能"},{"id":"da46ee76-b8f5-4470-87c7-ed3465804f64","keyword":"织构演变","originalKeyword":"织构演变"}],"language":"zh","publisherId":"xyjsclygc201412011","title":"大尺寸镁-锌-锆合金挤压型材组织、织构和力学性能的研究","volume":"43","year":"2014"}],"totalpage":1121,"totalrecord":11202}