欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(6764)
  • 图书()
  • 专利()
  • 新闻()

INFLUENCE OF ENVIRONMENT ON TENSILE BEHAVIOR OF Ni_3Al SYNTHESIZED UNDER COMPRESSION

LI Gang , WANG Zhongguang , LI Guangyi(State Key Laboratory of Fatigue and Fracture for Materials , Institute of Metal Research , Chinese Academy of Sciences , Shenyang 110015 , China)V.OVCHARENKO(Institute of Strength Physics and Materials Science , Russian Academy of Science , Siberian Branch , Tomsk , Russia) Manuscript received 3 May 1995

金属学报(英文版)

Self propagating high temperature synthesis(SHS) under compression was utilized to obtain an intermetallic compound Ni_3 Al by using elemental powders.The microstructure of the SHS product was observed by optical microscopy(OM) and scanning electron microscopy(SEM).The results reveal that the SHS Ni3Al is a single-phase polycrystalline alloy wilh LI2 crystal structure.Tensile tests were conducted from room temperature to 800℃ both in air and in vacuum.The results show that the SHS Ni_3Al exhibits an anomalous temperature dependence of ultimate tensile strength.The ultimate tensile strength in vacuum is much higher than that in air over the whole temperature range.Fracture surfaces are characterized by the brittle grain boundary fracture and the intergranular fracture mode can not be affected markedly by the test environment.

关键词: :Ni_3Al , null , null , null

INFLUENCE OF TEMPERATURE ON FATIGUE CREEP INTERACTION FRACTURE MAP

ZHANG Hongxue XU Zhichao CHEN Guoliang University of Science and Technology Beijing , Beijing , China Professor , Faculty of Superalloy , University of Science and Technology Beijing , Beijing , China

金属学报(英文版)

The relative ratio of fatigue resistance to creep resistance of materials varies with test temper- ature.As the temperature decreases,the creep resistance,since it is a thermal activation pro- cess,becomes relatively larger than fatigue resistance.Therefore the fatigue damage becomes predominant,and results in expansion of fatigue fracture region(region F),and shrinkage even complete elimination of creep fracture region(region C).A materials parameter Ω can be defined to estimate the temperature at which the creep fracture region is completely de- pressed.This phenomenon could be understood on the basis of the integrated model of compet- itive and cumulative models of fatigue creep interaction.

关键词: creep fracture , null , null , null

The Morphology of Rolling Contact Fatigue Fracture of Hardened Steels

WANG Xu , ZHANG Shouhua , CUI Peiyong Beijing University of Science and Technology , Beijing , China. Central Iron and Steel Research Institute , Beijing , China.

材料科学技术(英文)

Rolling Contact Fatigue(RCF) is a cumulative damage phenomenon when metals are subjected to repeated contact stresses. The fomation of pitting on the contact surface is the result of the rolling contact fatigue. The morphologies of rolling contact fatigue fracture of the har- dened steels (86CrHoV7, 42CrMo) show that strong resemblance in fractuye mechanisms exists between rolling contact fatigue and uni-axial fatigue. Since fatigue striations are hardly observed in hardened steels under uni-axial fatigue, it is interesting to note that the state of stress in rolling contact fatigue is more favor- able to ductile fractures than in uni-axial fatigue.

关键词: rolling contact , null , null , null , null , null

MECHANISM MAP OF TORSIONAL FATIGUE FRACTURE

HU Zhizhong WU Yusheng CAI Heping MA Lihua Xi′an jiaotong University , Xi′an , China Senior Engineer , Res.Inst.for Strength of Metals , Xi′an jiaotong University , Xi′an 710049 , China

金属学报(英文版)

Studies have been made of the torsional fatigue fracture life of notched specimens,the macroscopic fractography and microscopic fracture mechanism of steel 40Cr after various tempering treatments under different stresses,With the increase of stress,the fracture model changes from normal stress fracture to longitudinal shear one,and then transversal shear one. Under same stress,with the increase of strength,the fracture mode transfers from shear to normal stress fracture.The mechanism of normal stress fracture may be:transgranular frac- ture→striation+intergranular fracture→dimple+intergranular fracture,and of shear fracture may be:transgranular fracture→shear trace→dimple.Based on the experimental results,a fracture mechanism map of torsional fatigue has been drawn up.

关键词: mechanism map , null , null

Quantitative study of correlation between fracture surface roughness and fatigue properties of SiC/Al composites

Materials Letters

Quantitative measurements were carried out on the fatigue fracture surface of the SiC/Al composite by a sectioning method. It was shown that the cyclic plastic strain amplitude, SiC volume fraction and particle size have effects on fracture surface roughness R(S). The measured fracture surface roughness R(S) is closely related to the fatigue-crack propagation path and may corresponds to the fatigue life. Moreover, it was found that there is an obvious difference in the R(S) values for fatigue fractures which are due to different fracture mechanisms. These results show that it is possible to reflect the fracture mechanism using fracture surface roughness and relate it to the fracture properties of materials.

关键词: composite;SiC/Al;fatigue fracture;roughness;fractal dimension;sectioning method;general-method;fractography

Fracture mechanisms in bulk metallic glassy materials

Physical Review Letters

We find that the failure of bulk metallic glassy (BMG) materials follows three modes, i.e., shear fracture with a fracture plane significantly deviating from 45degrees to the loading direction, normal tensile fracture with a fracture plane perpendicular to the loading direction, or distensile fracture in a break or splitting mode with a fracture plane parallel to the loading direction. The actually occurring type of failure strongly depends on the applied loading mode and the microstructure of the material. Extensive evidence indicates that the Tresca fracture criterion is invalid, and for the first time, three fracture criteria are developed for isotropic materials with high strength, such as advanced BMGs or the newly developed bulk nanostructural materials.

关键词: amorphous-alloys;enhanced plasticity;zr-ti;flow;deformation;composite;strength;microstructure;ribbons;failure

THERMAL FATIGUE AND FRACTURE MECHANICS ANALYSIS OF GREY CAST IRON

GUO Chengbi ZHOU Weisheng Dalian Institute of Technology , Dalian , Liaoning , China Professor , Dept.of Shipbuilding , Dalian Institute of Technology , Dalian , Liaoning , China

金属学报(英文版)

The in-phase and out-of-phase thermal fatigue,the C-P type and P-C type isothermal fa- tigue of grey cast iron were experimentally studied.The fatigue life was evaluated analytically by using the elastic-plastic fracture mechanics method(mainly J integral).The results of ex- periments and calculations showed that the lifes of in-phase and C-P type fatigue are longer than that of out-of-phase and P-C type fatigue respectively within the same strain range. This is in contrast to the results of other materials such as low carbon steel.On the other hand, the predicted lifes are consistent with experimental results.This suggests that J integral as a mechanics parameter for characterizing the thermal fatigue strength of grey cast iron and the mechanics model and the calculation method developed here are efficient.A parameter ΔW_1 was proposed from energy aspect to characterize the capacity of crack propagation. The isothermal fatigue life is the same as the thermal fatigue life for identical ΔW_1 values.

关键词: grey cast iron , null , null

Fracture toughness and fatigue crack growth characteristics of nanotwinned copper

Acta Materialia

Recent studies have shown that nano twinned copper (NT Cu) exhibits a combination of high strength and moderate ductility. However, most engineering and structural applications would also require materials to have superior fracture toughness and prolonged subcritical fatigue crack growth life. The current study investigates the effect of twin density on the crack initiation toughness and stable fatigue crack propagation characteristics of NT Cu. Specifically, we examine the effects of tailored density of nanotwins, incorporated into a fixed grain size of ultrafine-grained (UFG) copper with an average grain size of 450 nm, on the onset and progression of subcritical fracture under quasi-static and cyclic loading at room temperature. We show here that processing-induced, initially coherent nanoscale twins in UFG copper lead to a noticeable improvement in damage tolerance under conditions of plane stress. This work strongly suggests that an increase in twin density, at a fixed grain size, is beneficial not only for desirable combinations of strength and ductility but also for enhancing damage tolerance characteristics such as fracture toughness, threshold stress intensity factor range for fatigue fracture and subcritical fatigue crack growth life. Possible mechanistic origins of these trends are discussed, along with issues and challenges in the study of damage tolerance in NT Cu. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

关键词: Nanotwins;Fracture toughness;Fatigue crack growth;Damage tolerance;Nanocrystalline copper;strain-rate sensitivity;nanocrystalline metals;mechanical-behavior;opening displacement;grain-size;nickel;deformation;nanoscale;strength;twins

LOW CYCLE FATIGUE AND DEFORMATION BEHAVIOR IN AN 8090 Al-Li ALLOY

S.H. Ai , Y.Q. Wu , Z.G. Wang and Y.Zhang(State Key Laboratory for Fatigue and Fracture of Materials , Institute of Metal Research , The Chinese Academy of Sciences , Shenyang 110015 , China)

金属学报(英文版)

Low cycle fatigue (LCF)tests under different total strain amplitudes have been conducted in order to ascertain the effect of precipitate sizes on LCF behavior of 8090 Al-Li alloy. A constant strain rate of 3×10-3s-1 and symmetrical triangular waveform were employed for all tests. It is found that the cyclic stress response of the alloy varied with the precipitate sizes and strain amplitudes. The materials in all conditions cyclically handen at first and the higher the strain amplitude, the greater the amount of hardening. The low cyclic flow stress is the highest in the peakaged condition. TEM and SEM observations demonstrated that cyclic stress-strain behavior and fracture mode of Al-Li alloy are closely related to an increase in the dislocation density and interaction between the precipitates and dislocations, sizes of δ particles and pricipitate free zone (PFZ) at grain boundaries.

关键词: Al-Li alloy , null , null

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共677页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词