欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(3373)
  • 图书()
  • 专利()
  • 新闻()

DUCTILE CRACK INITIATION AND STEADY-STATE PROPAGATION OF HIGH STRENGTH STRUCTURAL STEEL

CHEN Huangpu DENG Zengjie Xi'an Jiaotong University , Xi'an , China CHEN Huangpu , Lectuer , Research Institute for Strength of Metals , Xi'an Jiaotong University , Xi'an 710049 , China

金属学报(英文版)

The resistance to crack propagation at earlier stage for a high strength structural steel with certain ductility and its correlation to microstructures,stress states,deformation history and strain characteristics have been investigated.The resistance to crack propagation is mainly de- termined by the plastic constrain ahead of the crack tip,the elastic energy and plastic work absorbed in the stress-strain field.These are connected with the state function of triaxial stress.The deformation history and strain characteristic during deformation of material are described by the flow line in which the deformation history and strain characteristic restrain the crack initiation at stage Ⅱ and the crack propagation at stage Ⅲ.The strain hardening rate may sensitively reflect the stress distribution and micro-fracture mechanism in the interi- or of material.

关键词: high strength structural steel , null , null , null

RESIDUAL STRESS CONCENTRATION AND ITS EFFECTS ON FATIGUE LIMIT AND SHORT CRACK GROWTH

HE Jiawen HU Naisai ZHANG Dingquan Xi'an Jiaotong University , Xi'an , China Professor , Research Institute for Strength of Metals , Xi'an Jiaotong University , Xi'an 710049 , China

金属学报(英文版)

Residual stress concentration at a notch depends on both notch geometry and yield strength of the material.It varies through the depth,and its magnitude may be higher than the theoretical one.Compressive residual.stress concentration at the notch of shot-peened specimen of soft material is easily to he relaxed,with the surface damage during shot-peening results in a mi- nor contribution to the fatigue limit.Compressive residual stress increases the crack closure effect at the notch and may lead to a non-propagating crack.

关键词: residual stress , null , null

Relationship between tensile strength and porosity for high porosity metals

Science in China Series E-Technological Sciences

An analysis model has been established according to the structure feature of high porosity metals, and the mathematical relationship between the tensile strength and porosity for this material has been derived from the model. Moreover, the corresponding theoretical formula has been proved good to reflect the variation law of tensile strength with porosity for high porosity metals by the example experiment on nickel foam.

关键词: high porosity metal;tensile strength;porosity;foams

A first-principles study of the theoretical strength and bulk modulus of hcp metals

Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties

A first-principles method based on the local-density approximation using discrete variational clusters has been used to study the electronic structure of the hcp metals, Be, Mg, Sc, Y, Ti, Zr, Co, Zn and Cd. The binding energy of these metals was calculated in relation to the volume of a unit cell. The variation in the binding energy with the unit cell volume was obtained by means of a polynomial fit. The theoretical tensile strength and bulk modulus of these metals were estimated from the electronic structure and binding energy calculations. The predicted bulk moduli for these metals are in good agreement with experimental findings and other available theoretical data. A linear relationship between the calculated and the experimental strengths is observed.

关键词: potentials;density

Dislocation nucleation governed softening and maximum strength in nano-twinned metals

Nature

In conventional metals, there is plenty of space for dislocations-line defects whose motion results in permanent material deformation-to multiply, so that the metal strengths are controlled by dislocation interactions with grain boundaries(1,2) and other obstacles(3,4). For nano-structured materials, in contrast, dislocation multiplication is severely confined by the nanometre-scale geometries so that continued plasticity can be expected to be source-controlled. Nano-grained polycrystalline materials were found to be strong but brittle(5-9), because both nucleation and motion of dislocations are effectively suppressed by the nanoscale crystallites. Here we report a dislocation-nucleation-controlled mechanism in nano-twinned metals(10,11) in which there are plenty of dislocation nucleation sites but dislocation motion is not confined. We show that dislocation nucleation governs the strength of such materials, resulting in their softening below a critical twin thickness. Large-scale molecular dynamics simulations and a kinetic theory of dislocation nucleation in nano-twinned metals show that there exists a transition in deformation mechanism, occurring at a critical twin-boundary spacing for which strength is maximized. At this point, the classical Hall-Petch type of strengthening due to dislocation pile-up and cutting through twin planes switches to a dislocation-nucleation-controlled softening mechanism with twin-boundary migration resulting from nucleation and motion of partial dislocations parallel to the twin planes. Most previous studies(12,13) did not consider a sufficient range of twin thickness and therefore missed this strength-softening regime. The simulations indicate that the critical twin-boundary spacing for the onset of softening in nano-twinned copper and the maximum strength depend on the grain size: the smaller the grain size, the smaller the critical twin-boundary spacing, and the higher the maximum strength of the material.

关键词: molecular-dynamics simulation;nanocrystalline materials;mechanical-properties;nanotwinned copper;deformation;plasticity;nanoscale;ductility;crystals;nickel

MICROSTRUCTURE AND PROPERTIES OF SiC_w/6061Al COMPOSITE The Author is now with Institute of Metal Research,Academia Sinica,China

MA Zongyi YAO Zhongkai Harbin Institute of Technology , Harbin , China

金属学报(英文版)

The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the strength and ductility of the composite from 582 MPa as squeeze casted up to 639 MPa,and on the transformation from isotropic to the anisotropic structure.This seems to be explained by the orientation of whiskers and the densification of dislocations in matrix.TEM observation indicates that the stacking fault is the usual planar defect on the SiC_w surface. composite;;SiC whisker;;Al alloy;;microstructure

关键词: composite , null , null , null

RESEARCH ON CHEMICAL COMPOSITION AND MICROSTRUCTURE OF NEWLY—DEVELOPED HIGH STRENGTH AND HIGH ELONGATION STEELS

Y.Chen X.Chen A.M.Guo D.X.Luo , B.F.Xu , Z.X.Yuan , P.H.Li , S.K.Pu , S.B.Zhou

金属学报(英文版)

The different chemical composition of silicon and manganese as well as different re-tained austenite fraction ranged from 4to 101163326174f the high strength and high elon-gation steels were studied in the paper.The dislocations and carbon concentration in retained austenite were observed by a transmission electron microscope and an electric probe analyzer,respectively.The experimental results showed that silicon and manganese are two fundamental alloying elements to stabilize austenite effectively but retaining austenite in different mechanis-↑ms.Meanwhile,the cooling processing played an important role in controlling the fraction of retained austenite of the hot-rolled high strength and high plasticity steels.

关键词: high strength , null , null

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 下一页
  • 末页
  • 共338页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词