LI Huabing
,
JIANG Zhouhua
,
SHEN Minghui
,
YOU Xiangmi
钢铁研究学报(英文版)
A simple and feasible method for the production of high nitrogen austenitic stainless steels involves nitrogen gas alloying and adding nitrided ferroalloys under normal atmospheric conditions. Alloying by nitrogen gas bubbling in FeCrMnMo series alloys was carried out in MoSi2 resistance furnace and air induction furnace under normal atmospheric conditions. The results showed that nitrogen alloying could be accelerated by increasing nitrogen gas flow rate, prolonging residence time of bubbles, increasing gas/molten steel interfaces, and decreasing the sulphur and oxygen contents in molten steel. Nitrogen content of 069% in 18Cr18Mn was obtained using air induction furnace by bubbling of nitrogen gas from porous plug. In addition, the nickelfree, high nitrogen austenitic stainless steels with sound and compact macrostructure had been produced in the laboratory using vacuum induction furnace and electroslag remelting furnace under nitrogen atmosphere by the addition of nitrided alloy with the maximum nitrogen content of 081%. Pores were observed in the ingots obtained by melting and casting in vacuum induction furnace with the addition of nitrided ferroalloys and under nitrogen atmosphere. After electroslag remelting of the cast ingots, they were all sound and were free of pores. The yield of nitrogen increased with the decrease of melting rate in the ESR process. Due to electroslag remelting under nitrogen atmosphere and the consequential addition of aluminum as deoxidizer to the slag, the loss of manganese decreased obviously. There existed mainly irregular Al2O3 inclusions and MnS inclusions in ESR ingots, and the size of most of the inclusions was less than 5 μm. After homogenization of the hot rolled plate at 1 150 ℃×1 h followed by water quenching, the microstructure consisted of homogeneous austenite.
关键词:
nitrogen gas alloying;nitrided ferroalloy;high nitrogen austenitic stainless steel;vacuum induction melting;electroslag remelting
周萧明
,
胡更开
复合材料学报
doi:10.3321/j.issn:1000-3851.2004.06.026
提出了预测复合材料非线性电位移和电场强度关系的一种解析方法,该方法基于各向材料的割线介电常数,将非线性问题转化成一系列线性问题来求解.该方法适用于任意各向异性复合材料和组分材料的非线性性质,而常用的Stroud和Hui的模型只适用于各向同性复合材料和组分材料的弱线性.证明了本文方法具有Ponte Castaneda提出的变分结构.计算结果表明,当基体非线性较小时,本文模型的预测与Stroud和Hui的模型一致,但当基体非线性系数增大时,本文模型能给出合理的预测结果,而Stroud和Hui的模型则会超出基体和夹杂的性能范围.
关键词:
复合材料
,
介电常数
,
非线性
,
割线方法