Pan Ting
,
Song Wenjing
,
Cao Xiaodong
,
Wang Yingjun
材料科学技术(英文)
doi:10.1016/j.jmst.2016.01.007
Gelatin/Alginate hydrogels were engineered for bioplotting in tissue engineering. One major drawback of hydrogel scaffolds is the lack of adequate mechanical properties. In this study, using a bioplotter, we constructed the scaffolds with different pore architectures by deposition of gelatin/alginate hydrogels layer-by-layer. The scaffolds with different crosslinking degree were obtained by post-crosslinking methods. Their physicochemical properties, as well as cell viability, were assessed. Different crosslinking methods had little influence on scaffold architecture, porosity, pore size and distribution. By contrast, the water absorption ability, degradation rate and mechanical properties of the scaffolds were dramatically affected by treatment with various concentrations of crosslinking agent (glutaraldehyde). The crosslinking process using glutaraldehyde markedly improved the stability and mechanical strength of the hydrogel scaffolds. Besides the post-processing methods, the pore architecture can also evidently affect the mechanical properties of the scaffolds. The crosslinked gelatin/alginate scaffolds showed a good potential to encapsulate cells or drugs.
关键词:
Bioplotting
,
Tissue engineering
,
Scaffolds
,
Gelatin
,
Alginate
Physics of Life Reviews
Commentaries by Philip W.T. Pong, Nongyue He, S.D. Liang, Tao Song, Yuri Gaididei and Sergey Volkov and Alexander Y. Grosberg on my review article (Pang, 2011 [1]) are answered. The validity of Davydov's mechanism of bio-energy transport, the completeness of theory, outstanding problems, the normalization and validity of wave function of the system in Pang' model as well as other related problems are elucidated in detail. (C) 2011 Elsevier B.V. All rights reserved.
关键词:
biological temperature;3 channels;soliton;model
李莉
,
李庆芬
,
郑磊
,
徐庭栋
,
杜善义
钢铁研究学报
以工业用12Cr1MoV钢为研究对象,通过俄歇电子能谱分析方法(AES),对磷在恒温过程中的非平衡晶界偏聚浓度进行了测定.获得的磷在钢中的非平衡晶界偏聚动力学曲线直接验证了非平衡晶界偏聚动力学理论中的Xu-Song模型.
关键词:
晶界偏聚
,
临界时间
,
扩散
,
钢