WEI Min-xian
,
WANG Shu-qi
,
WANG Lan
,
CUI Xiang-hong
,
CHEN Kang-min
钢铁研究学报(英文版)
Dry sliding wear tests of a Cr-Mo-V cast hot-forging die steel was carried out within a load range of 50-300 N at 400 ℃ by a pin-on-disc high-temperature wear machine. The effect of heat treatment process on wear resistance was systematically studied in order to select heat treatment processes of the steel with high wear resistance. The morphology, structure and composition were analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS); wear mechanism was also discussed. Tribo-oxide layer was found to form on worn surfaces to reduce wear under low loads, but appear inside the matrix to increase wear under high loads. The tribo-oxides were mainly consisted of Fe3O4 and Fe2O3, FeO only appeared under a high load. Oxidative mild wear, transition of mild-severe wear in oxidative wear and extrusive wear took turns to operate with increasing the load. The wear resistance strongly depended on the selection of heat treatment processes or microstructures. It was found that bainite presented a better wear resistance than martensite plus bainite duplex structure, martensite structure was of the poorest wear resistance. The wear resistance increased with increasing austenizing temperature in the range of 920 to 1120 ℃, then decreased at up to 1220 ℃. As for tempering temperature and microstructure, the wear resistance increased in following order: 700 ℃ (tempered sorbite), 200 ℃ (tempered martensite), 440 to 650 ℃ (tempered troostite). An appropriate combination of hardness, toughness, microstructural thermal stability was required for a good wear resistance in high-temperature wear. The optimized heat treatment process was suggested for the cast hot-forging steel to be austenized at 1020 to 1120 ℃, quenched in oil, then tempered at 440 to 650 ℃ for 2 h.
关键词:
cast hot-forging die steel
,
heat treatment process
,
high-temperature wear mechanism
,
wear behavior
,
microstructure
WEI Min-xian
,
WANG Shu-qi
,
WANG Lan
,
CHEN Kang-min
钢铁研究学报(英文版)
Elevated-temperature wear tests under atmospheric conditions at 400 ℃ were performed for a hot working die steel H21 on a pin-on-disk wear tester. The phase and morphology of worn surfaces were examined using XRD and SEM, and the relation of wear resistance to tempered microstructures was studied for H21 steel. XRD patterns exhibit that oxidative wear is a predominated wear mechanism with Fe3O4 and Fe2O3 on worn surfaces. It is found that with increasing normal load, obvious plastic deformation of substrate appears on worn surfaces. Microstructures start to affect apparently wear resistance of the steel with an increase of load. Under loads of 50-100 N, wear losses of steel retain low values and relatively approach for steels with various microstructures. As loads are increased to 150-200 N, wear losses of steel start to increase obviously and present apparent difference for steel with various microstructures. Wear resistance is found to increase in the sequence as follows: tempered sorbite, tempered martensite, tempered troostite without secondary hardening and tempered troostite with secondary hardening or upcoming one. Higher strength and microstructural stability are required for steels with excellent wear resistance.
关键词:
steel
,
heat treatment
,
microstructure
,
wear
,
wear resistance
Q.S. Liu1
,
2
,
3)
,
L.C. Zhao3)
,
G.X. Dong2) and N.J. Gu1) 1) Heibei University of Technology
,
Tianjin 300130
,
China 2) Tianjin Institute of Technology
,
Tianjin 300191
,
China 3) Harbin University of Technology
,
Harbin 150001
,
China
金属学报(英文版)
Theconstruction changinginthereversetransformation ofthestress induced εMin Fe 17 Mn 10 Cr 5 Si 4 Ni alloy is carefully inspected in transmission electron microscope, and then stress induced εM procedure of reverse transformation is analyzed. The behavior of reverse transformationisdissimilar when the organization of εMis different. The reversetransfor mation ofεM withtheshapeofsingle plateandstripisrelativelyeasy,anditsreversibilityincrystallographiciseasilytocarryout,fortheεM with multilayerstructure,thereversetrans formationtakes placein isolatedlayers, fortheεMthat grows well,thereversetransforma tion isrelatively difficult becauseofthe ductile harmonization between itsinternalorganiza tion structures.
关键词:
stress induced εM
,
null
,
null
徐佩
,
卢旭鑫
,
汪传斌
,
杨善中
,
孙晓红
,
丁运生
高分子材料科学与工程
为改善多壁碳纳米管(MWNT)在低密度聚乙烯(LDPE)中的分散性及复合材料的界面特性,采用溴化-1-十六烷基-3-甲基咪唑基离子液体([C16min]Br)对MWNT进行表面改性,并用Raman光谱对改性效果进行了表征.将经过修饰的碳纳米管(MIL)与LDPE熔融共混得到MIL/LDPE复合材料,采用场发射扫描电子显微镜(FESEM)和阻抗分析仪(LCR)对复合材料的结构与介电性能进行了分析.结果表明,相比与MWNT/LDPE(渗流阈值为5.2%,介电常数为82,介电损耗为0.93),MIL/LDPE(渗流阈值为9.1%,介电常数为169,介电损耗为0.51)介电常数增大,介电损耗降低.并且在低温时,MIL/LDPE介电常数随温度的变化甚小,显示出良好的温度-介电常数特性.
关键词:
咪唑基离子液体
,
碳纳米管
,
低密度聚乙烯
,
介电性能
金属学报(英文版)
桑危郑牛樱裕桑牵粒裕桑希巍。希啤。龋伲模遥希牵牛巍。桑危模眨茫牛摹。模眨茫裕桑蹋拧。拢遥桑裕裕蹋拧。裕遥粒危樱桑裕桑希巍。桑巍。罚保罚怠。粒蹋眨停桑危眨汀。粒蹋蹋希?##2##3##4##5INVESTIGATIONOFHYDROGENINDUCEDDUCTILEBRITTLETRANSITIONIN7175ALUMINUMALLOY$R.G.Seng:B.JZhong,MG.ZengandP.Geng(DepartmentofMaterialsScierce,ScienceCollege,NorthearsternUniveisity,Shenyang110006,ChinaMaruscriptreceived4September1995inrevisedform20April1996)Abstrac:Effectsofhydrogenonthemechanicalpropertiesofdifferentlyaged7175aluminumalloyswereinvestigatedbyusingcathodicH-permeation,slowstrainratetensionandsoon.Theresultsindicatethatboththeyieldstressandthepercentagereductionofareadecreasewithincreasinghydrogenchargingtime,andthedegreeofreductiondecreasesasagingtimeincreasesforthesamehydrogenchargingtime.Keywords:hydrogeninducedductile-brittletransition,7175aluminumalloy,mechanicalproperty,cathodicH-permeation1.IntroductionForalongtimehydrogenembrittlementproblemwasthoughttobeabsentinhighstrengthaluminiumalloybecausethesolutiondegreeofhydrogeninaluminumatcommontemperatureandpressureisverysmall.However,hydrogenembrittlementphenomenonwasfoundinaluminumalloyduringtheinvestigationofstresscorrosionandcorrosionfatigue[1-5].Therehavebeenonlyafewreportsofhydrogeninducedsofteningandhardening.Inthispaper,theeffectsofhydrogenonmechanicalpropertiesof7175aluminumalloywereinvestigatedbyusingcathodicalchargingwithhydrogenandslowtensiontests.2.ExperimentalProcedureTheexperimentalmaterialwas7175aluminumalloyforgingintheformofa43mminthicknessandwithcomposition(wt%).5.41Zn,2.54Mg.1.49Cu,0.22Cr,0.1Mn.0.1Ti,0.16Fe.0.11Si,balancedbyA1.Alloyplateof1.5mminthicknesswasobtainedbyhot(465℃)andtoldrollingto83%reductioninthickness.Thelongaxisofhydrogenchargedspecimensisalongtherollingdirection.Allspecimensweresolidsolutionedat480℃for70min,followedtyimmediatequenchinginwaterandthenagedat140℃for6h(A),16h(B)and98h(C).Thetreatmentof6hiscorrespondingtotheunderagedstate.16hthefirstpeak-agedstateand98hthesecondpeak-agedstate.Thespecimenswerepolishedsuccessivelyusingemerypaperbeforehydrogencharging.Thetensilespecimenswerecathodicallychargedina2NH_2SO_4solutionwithasmallamountofAs_2O_3forpromotinghydrogenabsorption,andwithacurrentdensityof20±1mA/cm ̄2atroomtemperature.ThehydrogencontentanalysiswascarriedoutonanLT-1Amodelionmassmicroprobeafterthesputteringdepthreached8nm.Theioncurrentsofhydrogenandaluminuminvariousagedstateswererecordedunderthesamecondition.ThetensiletestswereperformedonanAG-10TAmodeltestmachinewhichwascontrolledbycomputer.3.ExperimentalResultsTheratioofioncurrentstrengthofhydrogentoaluminumisrelatedtohydrogenconcentrationinhydrogenchargedspecimen.TheresultswereshowninTable1Thehydrogencontentincreaseswiththeincreaseincharingtime.Ofthethreeagedstates,theunderagedspecimenhasthehighesthydrogencontent.Theratioofyieldstrengthofhydrogenchargedandunchargedspecimenschangeswithhydrogenchargingtime,asshowninFig.1Itcanbeseenthattheyieldstrengthofhydrogenchargedspecimendecreasewithincreasinghydrogenchargingtime.Atthesamechargingtime,theyieldstressdecreasestheleastinthesecondpeak-agedstate,anddecreasesthemostintheunderagedstate.Itindicatesthattheunderagedspecimenismostsensitivetohydrogeninducedsoftening,whichisconsistentwiththeresultsofanotherhighstrengthaluminumalloy[6].TherelativechangesoftheradioofreductionofareawithhydrogenchargingtimearesummarizedinFig.2,whereΨ ̄0andΨ ̄Harethepercentagereductionofareaofthesamplewithoutandwithhydrogenchargingrespectively.Theradioofreductionofareareduceswhenhydrogenchargingtimeincreases,andthedecreasingdegreeofreductionofareaincreaseswithincreasingagingtime,ie,,theunderagedstateisthemostsensitivetohydrogenembrittlement.4.DiscussionItisknownfromtheresultsabovethatcathodicalchargingwithhydrogenleadstotheobviousdecreaseinthetensilestrengthandplasticityThisisbecausealargeamountofsolidsolutionhydrogenentersthespecimenintheprocessofhydrogenchargingSolidsolutionhydrogenisliabletoenterthecentreofdislocationundertheactionofdislocationtrap,henceraisingthemovabilityofdislocation.Thereforethedislocationsinhydrogenchargedspecimenmoveeasierthaninunchargedspecimen.soresultinginthereductionofyieldstrength[7].Whendislocationstartstomove,thecrystallatticeresistance(P-Nforce)whichitmustovercomeisgivenby:whereμismodulusofshear,visPoissonratio,aisspanofslipplane,bisatomspanofslipdirection.Moreover.theotherresistanceofdislocationmotionmayarisefromtheelasticinteractionofdislocation,theactionwithtreedislocationandetc.,itcanbeexpressedasfollows:whereαisconstant,XisdislocationspanSotheresistanceofdislocationmotioncanbewrittenasfollows:Becausehydrogenatomsreducetheatombondingstrengthafterhydrogencharging,shearmodulusμdecreasesandresultsinthereductionoff,therebytheyieldstressdecreases.Asthecentreofdislocationistheseriousdistortionzoneoflattice.thestresscanberelaxedafterhydrogenatomstuffing,andthesystemenergydecreases.Thusthecentreofdislocationisastrongtrapofhydrogen[8].Therefore,amovabledislocationcaptureshydrogenandmigratestograinboundaries.phaseboundariesorsurfaceofthespecimen,promotingthecrackiesformationandgrowth,thuscausingthelossofplasticity.Sincethelocalenrichmentofhydrogenisrealizedbydislocationtransporting(inthestageofdeformation),thelargerthereductionofyieldstress.theearlierarehydrogenatomstransportedtotheplaceofenrichment.Inaddition,thedamageofatombondingstrengthinducedbyhydrogenmakesthefracturestressdecrease[9]:whereCHishydrogenconcentration.σ_thisfracturestrengthbeforehydrogenchargingandisfracturestrengthafterhydrogencharging.Eq.(4)showsthatthematerialsmaybefracturedatalowerstraini.e.,brittlefractureoccurs.5.Conclusions(1)Hydrogencontentofdifferentlyagedspecimensincreaseswithincreasinghydrogenchargingtimethecapabilityofthealloytoabsorbhydrogeninunderagedstateisthestrongest.(2)Theyieldstressaswellasthepercentagereductionofareaof7175aluminumalloydecreaseashydrogenchargingtimeincreasesundervariousagedstates.(3)Underagedstateismostsensitivetohydrogeninducedsofteningandhardening.(4)Anexplanationwasofferedforthephenomenonofhydrogeninducedsofteninginthestageofdeformation,andhardeninginthestageoffracture.REFERENCES||1G.KKock,Corrosion35(1979)73.2M.K.TsengandH.LMarcus,Scr.Metall.15(1981)427.3PSFao.M.GaoandR.P.Wei,Scr.Metall.19(1985)265.4R.G.SongandM.K.TsengJ.NortheasternUniversity15(1994)5(inChinese).5R.K.Viswanadham,T.S.sunandJ.A.S.Green,Metall.Trans.11A(1980)85.6J.Liu,M.KTsengandB.R.Liu.NonferrousMiningandMetallrgy5(1989)33(inChinese).7LChen,WXChen,ZHLiuandZ.Q.Hu,InFrocofthe1stNationalConfonAl-LiAlloys(Sheryang.China,1991)p.328(inChinese).8Z.HLiuL.ChenW.XChenY.X.ShaoandZ.Q.Hu,InProc.ofthe1stNationalConfonAl-LiAlloys(Shenyang,China,1991)p.334(inChinese).9R.A.OrianiandF.H.Josephic,ActaMetall.22(1974)1065.##61G.KKock,Corrosion35(1979)73.2M.K.TsengandH.LMarcus,Scr.Metall.15(1981)427.3PSFao.M.GaoandR.P.Wei,Scr.Metall.19(1985)265.4R.G.SongandM.K.TsengJ.NortheasternUniversity15(1994)5(inChinese).5R.K.Viswanadham,T.S.sunandJ.A.S.Green,Metall.Trans.11A(1980)85.6J.Liu,M.KTsengandB.R.Liu.NonferrousMiningandMetallrgy5(1989)33(inChinese).7LChen,WXChen,ZHLiuandZ.Q.Hu,InFrocofthe1stNationalConfonAl-LiAlloys(Sheryang.China,1991)p.328(inChinese).8Z.HLiuL.ChenW.XChenY.X.ShaoandZ.Q.Hu,InProc.ofthe1stNationalConfonAl-LiAlloys(Shenyang,China,1991)p.334(inChinese).9R.A.OrianiandF.H.Josephic,ActaMetall.22(1974)1065.##A##BINVESTIGATION OF HYDROGEN INDUCED DUCTILE BRITTLE TRANSITION IN 7175 ALUMINUM ALLOY$$$$R.G.Seng: B.J Zhong, MG. Zeng and P. Geng(Department of Materials Scierce, Science College,Northearstern Univeisity, Shenyang 110006, China Maruscript received 4 September 1995 in revised form 20 April 1996)Abstrac:Effects of hydrogen on the mechanical properties of differently aged 7175 aluminum alloys were investigated by using cathodic H-permeation, slow strain rate tension and so on. The results indicate that both the yield stress and the percentage reduction of area decrease with increasing hydrogen charging time, and the degree of reduction decreases as aging time increases for the same hydrogen charging time.
关键词:
:hydrogen induced ductile-brittle transition
,
null
,
null
,
null
X.B. Tian
,
X.F. Wang
,
A.G. Liu
,
L.P. Wang
,
S. Y. Wang
,
B. Y. Tang and P. K. Chu 1)Advanced Welding Production & Technology National Key Laboratory
,
Harbin Institute of Technology
,
Harbin 150001
,
China 2)Department of Physics & Materials Science
,
City University of Hong Kong
,
China
金属学报(英文版)
The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.
关键词:
plasma immersion ion implantation
,
null
,
null
夏小建
量子电子学报
doi:10.3969/j.issn.1007-5461.2009.06.010
采用Wei-Norman方法,求出含时变电压源的介观LC电路随时间演化的精确解,应用相空间准概率分布函数,研究了时变电源作用下介观LC电路相干态的量子特性,结果表明此函数是一个二维运动的Gauss波包,其中心电量和磁通呈余弦和正弦变化.
关键词:
量子光学
,
LC回路
,
介观电路
,
相干态
,
量子态演化
,
相空间的准概率分布函数