XIA Yuebo WANG Zhongguang DU Xiukui Institute of Metal Research
,
Academia Sinica
,
Shenyang
,
China XIA Yuebo
,
Associate Professor
,
Institute of Metal Research
,
Academia Sinica
,
Shenyang
,
China
金属学报(英文版)
Cyclic deformation in symmetrical push-pull mode was carried out at room temperature in air using a Schenck hydropuls machine.The total strain amplitude which was kept constant dur- ing the test ranged from ±0.004 to±0.012.The 0.2% offset yield stress σ_(0.2f) in tension and σ_(0.2r) in compression and peak stress σ were measured from the stress-strain hysteresis loop at various cycles.The Bauschinger strenghth differential factor(BSDF)was then calcu- lated from σ_(0.2f) and σ_(0.2r).The energy loss △E of each cycle was determined from hysteresis loop areas.These parameters,BSDF,σ and △E,appear to have two distinctively different stages. The dislocation structures were observed using TEM in specimens deformed cyclically,for various cycles.The observation shows that the dislocations pile-up mainly against grain boundaries and there exist large amount of deformation twins.The addition of 0.25 wt-% ni- trogen reduced the stacking fault energy of the alloy significantly.Cross-slip and climb are therefore rather difficult to occur during the cyclic deformation at room temperature,and well-defined dislocation cells and walls can only be seen at the final stage of fatigue.
关键词:
Bausckinger effect
,
null
,
null
MA Zongyi YAO Zhongkai Harbin Institute of Technology
,
Harbin
,
China
金属学报(英文版)
The SiC_w/Al composite prepared by squeeze casting has a combination of superior room temperature specific strength and modulus together with excellent thermal properties.The extrusion can make an improvement on the strength and ductility of the composite from 582 MPa as squeeze casted up to 639 MPa,and on the transformation from isotropic to the anisotropic structure.This seems to be explained by the orientation of whiskers and the densification of dislocations in matrix.TEM observation indicates that the stacking fault is the usual planar defect on the SiC_w surface. composite;;SiC whisker;;Al alloy;;microstructure
关键词:
composite
,
null
,
null
,
null
Corrosion
This paper introduces the design of a localized corrosion rate monitoring instrument that can monitor and evaluate the maximum and stable localized corrosion rate of a nonpassivable metal in a corrosive environment by measuring the current density in a corrosion sensor with an occluded anode.
关键词:
instrument;localized corrosion rate;monitor
严东旭
,
刘天伟
,
龙重
,
白彬
,
张鹏程
,
黄河
,
郎定木
,
王晓红
,
朱建国
材料保护
采用单一的表面改性技术难以提高贫铀钛合金(Du-Ti)的耐蚀性能.采用等离子体浸没离子注入技术依次在Du-Ti合金表面注入N和Ti,再利用非平衡脉冲磁控溅射技术制备多层Ti/,TiN,研究了膜层的形貌、结构及耐蚀性能.结果表明:膜层厚约3μm,呈柱状结构,致密,但存在一些微缺陷,膜基结合紧密;膜层出现面心立方结构的TiN和密排六方的Ti,在DU-Ti合金界面形成了少量的UO2,没有铀的氮化物;膜层耐蚀性能较基体得到较大提高;微观缺陷是TiN层局部片状脱落的主要原因,外层TiN出现片状脱落后.注入层和内层Ti/TiN多层膜仍能有效保护基体.
关键词:
等离子体浸没离子注入
,
非平衡磁控溅射
,
复合膜
,
DU-Ti合金
,
电化学腐蚀
,
耐蚀性
Juhua HUANG
,
Jinjun RAO
,
Xuefeng LI
材料科学技术(英文)
Sheet metal forming is widely applied to automobile, aviation, space flight, ship, instrument, and appliance industries. In this paper, based on analyzing the shortcoming of general finite element analysis (FEA), the conception of parametric finite element analysis (PFEA) is presented. The parametric finite element analysis, artificial neural networks (ANN) and genetic algorithm (GA) are combined to research thoroughly on the problems of process parameters optimization of sheet metal forming. The author programs the optimization scheme and applies it in a research of optimization problem of inside square hole flanging technological parameters. The optimization result coincides well with the result of experiment. The research shows that the optimization scheme offers a good new way in die design and sheet metal forming field.
关键词:
Sheet metal forming
,
null
,
null
,
null
J.Q.ZHANGD.J.YOUNG
中国腐蚀与防护学报
Metaldusting attacks iron, low and high alloy steels and nickel-or cobalt-base alloys by disintegrating bulk metals and alloys into metal particles in a coke deposit. It occurs in strongly carburising gas atmospheres (carbon activity aC>1) at elevated temperatures (400 ℃~1000 ℃). This phenomenon has been studied for decades, but the detailed mechanism is still not well understood. Current methods of protection against metal dusting are either directed to the process conditions-temperature and gas composition-or to the development of a dense adherent oxide layer on the surface of the alloy by selective oxidation. However, metal dusting still occurs by carbon dissolving in the base metal via defects in the oxide scale. The research work at UNSW is aimed at determining the detailed mechanism of metal dusting of both ferritic and austenitic alloys, in particular the microprocesses of graphite deposition, nanoparticle formation and underlying metal destruction. This work was carried out using surface observation, cross-section analysis by focused ion beam and electron microscopic examination of coke deposits at different stages of the reaction. It was found that surface orientation affected carbon deposition and metal dusting at the initial stage of the reaction. Metal dusting occurred only when graphite grew into the metal interior where the volume expansion is responsible for metal disintegration and dusting. It was also found that the metal dusting process could be significantly changed by alterations in alloy chemistry. Germanium was found to affect the iron dusting process by destabilising Fe3C but increasing the rate of carbon deposition and dusting, which questions the role of cementite in ferritic alloy dusting. Whilst adding copper to iron did not change the carburisation kinetics, cementite formation and coke morphology, copper alloying reduced nickel and nickel-base alloy dusting rates significantly. Application of these fundamental results to the dusting behaviour of engineering alloys is discussed.
关键词:
metal dusting
,
null
,
null
,
null
,
null
,
null