Xiaobing REN and Xiaotian WANG (College of Materials Science and Engineering
,
Xi'an Jiaotong University Xi'an 710049
,
China)K.Shimizu and T.Tadaki (Institute of Scientific and Industrial Research
,
Osaka University
,
8-1
,
Mihoga-oka
,
Ibaraki
,
Osaka
,
567
,
Ja
材料科学技术(英文)
A theoretical study is developed on the evolution and mechanism of an ordering coupled phase separation, and on the origin of a resultant tweed microstructure. It is found that long-range elastic interaction among atoms with different atomic sizes plays a key role in the phase sep aration, and that the evolution of the phase separation is very similar to that Of conventional spinodal decomposition except that the separation is dependent on an elastic interaction order ing (EIO). This "EIO coupled spinodal decomposition" is shown to exhibit a periodical or tweed microstructure being accompanied by an EIO. It is also found that a large atomic size factor yields a large positive contribution of EIO to spinodal decomposition. Generally it is thermodynamically and kinetically favorable for the EIO to precede the onset of spinodal decomposition,though the former is not separable from the latter as a whole. We suggest that an initially disordered solid solution undergoes an EIO first, and then the partially ordered solid solution starts to decompose via a spinodal mechanism. Solute-enriched regions increase their degree of order along with an increase in solute content, and solute-depleted regions decrease their degree of order together with a decrease of solute content. The final microstructure is characterized by a periodical array of highly ordered solute-enriched regions and nearly disordered solute-depleted regions. The notion of EIO coupled spinodal decomposition is in general agreement with the transformation behaviour of a large number of alloy systems.
关键词:
Andrej Atrens
材料科学技术(英文)
Corrosion research by Atrens and co-workers has made significant contributions to the understanding of the service performance of engineering materials. This includes: (1) elucidated corrosion mechanisms of Mg alloys, stainless steels and Cu alloys, (2) developed an improved understanding of passivity in stainless steels and binary alloys such as Fe-Cr, Ni-Cr, Co-Cr, Fe-Ti, and Fe-Si, (3) developed an improved understanding of the melt spinning of Cu alloys, and (4) elucidated mechanisms of environment assisted fracture (EAF) of steels and Zr alloys. This paper summarises contributions in the following: (1) intergranular stress corrosion cracking of pipeline steels, (2) atmospheric corrosion and patination of Cu, (3) corrosion of Mg alloys, and (4) transgranular stress corrosion cracking of rock bolts.
关键词:
Stress corrosion cracking
,
null
,
null
LIU Guoquan Department of Materials Science and Engineering
,
University of Science and Technology Beijing
,
100083
,
China.
材料科学技术(英文)
Quantitative analysis of populations having a geometric structure,which has developed into a special scientific subject called microstructology or stereology,is of great importance to the characterization and evaluation of microstructures and their evolution in various processes.This paper, besides a brief discussion on those topics such as the recent developments of computer assisted image analysis,mathematical morphology,and fractal analysis,will mainly focus on the scope,fundamen- tals,present status,and perspectives of classical stereology.Several case examples of its application to materials science will also be given.
关键词:
stereology
,
null
,
null
,
null
Materials Science & Engineering C-Biomimetic Materials Sensors and Systems
Bamboo, one of the strongest natural structural composite materials, has many distinguishing features. It has been found that its reinforcement unit, hollow, multilayered and spirally-wound bast fiber, plays an extremely important role in its mechanical behavior. In the present work, on the basis of the study on bamboo bast fiber and wood tracheid, a biomimetic model of the reinforcing element, composed of two layers of helically wound fiber, was suggested. To detect the structural characteristics of such a microstructure, four types of macro fiber specimens made of engineering composites were employed: axially aligned solid and hollow cylinders, and single- and double-helical hollow cylinders. These specimens were subjected to several possible loadings, and the experimental results reveal that only the double-helical structural unit possesses the optimum comprehensive mechanical properties. An interlaminar transition zone model imitating bamboo bast fiber was proposed and was verified by engineering composite materials. In our work, the transition zone can increase the interlaminar shear strength of the composite materials by about 15%. These biomimetic structural models can be applied in the design and manufacture of engineering composite materials.
关键词:
bamboo;bast fiber;biomimetics;engineering composites
Science
Strengthening materials traditionally involves the controlled creation of internal defects and boundaries so as to obstruct dislocation motion. Such strategies invariably compromise ductility, the ability of the material to deform, stretch, or change shape permanently without breaking. Here, we outline an approach to optimize strength and ductility by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers. We assess current understanding of strengthening and propose a methodology for engineering coherent, nanoscale internal boundaries, specifically those involving nanoscale twin boundaries. Additionally, we discuss perspectives on strengthening and preserving ductility, along with potential applications for improving failure tolerance, electrical conductivity, and resistance to electromigration.
关键词:
strain-rate sensitivity;stacking-fault energy;nano-scale twins;cu-al;alloys;nanocrystalline metals;mechanical-properties;activation;volume;copper;deformation;behavior
Douxing LI and Hengqiang YE (Laboratory of Atomic imaging of Solids
,
Institute of Metal Research
,
Chinese Academy of Sciences
,
Shenyang
,
110015
,
China)
材料科学技术(英文)
The present paper summarizes the current status of high resolution electron microscopy (HREM)and the applications of HREM to materials science and condensed matter physics. This review recounts the latest development of high resolution electron microscope, progress of HREM and the applications of HREM, including the crystal structure determination of microcrystalline materials and characterization of the local structure of the defects and nanostructured materials as well as qualitative and quantitative analysis of the grain boundaries, interfaces and interfacial reactions in the advanced materials by means of HREM in combination with electron diffraction,subnanometer level analysis, image simulation and image processing.
关键词:
N.V.Ch
,
ra Shekar
,
P.Ch.Sahu
,
K.Govinda Rajan
材料科学技术(英文)
Laser-heated diamond-anvil cell (LHDAC) is emerging as the most suitable, economical and versatile tool for the measurement of a large spectrum of physical properties of materials under extreme pressure and temperature conditions. In this review, the recent developments in the instrumentation, pressure and temperature measurement techniques, results of experimental investigations from the literature were discussed. Also, the future scope of the technique in various avenues of science was explored.
关键词:
Laser heating
,
null
,
null
,
null
Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science
The half-width values of the X-ray diffraction profiles are frequently used to characterize the static strength of a strengthened surface, or the depth distribution of this mechanical parameter, in a strengthened surface layer, especially in a shot-peening affected layer. However, for the unpeened surface and the base material of the shot-peened specimen of an alloy steel treated in hard state, the experimental results shown in this article indicate that uniaxial tensile or compressive plastic deformation increases the yield strengths while it decreases the half-width values. The half-width values of the shot-peened surface and surface layer greatly decrease, whereas the yield strength of this surface remarkably increases. Accordingly, in the authors' opinion, the half-width values could not correctly describe the static strengths of hard metallic materials, and, contrary to the viewpoint put forward by a lot of researchers, the shot-peened surfaces of such materials are work hardened instead of work softened. A model demonstrating that plastic deformation reduces the half-width values by decreasing the second kind internal stresses is developed.
关键词: