Jing TIAN
,
Xiang XUE
,
Yuebing ZHANG
,
Yalong GAO
,
Luzhi LIU
,
Qin SUN
,
Shiyou YUAN
材料科学技术(英文)
By adopting the solid modeling software SoldEdge and the enmeshment software SRIFCast as the pre-processing platform, a Ni based alloy turbine blade was three-dimensionally modeled and automatically enmeshed. A software code for numerical simulation of fluid flow and heat transfer was developed. The Xue criterion and Niyama criterion were used to predict the position of the shrinkage defects occurring in the solidification processes of the turbine blade. The results showed that both Xue and Niyama criteria could precisely predict the shrinkage defects in the Ni based alloy turbine blade. This indicates that numerical simulation is a significant tool in improving casting quality.
关键词:
Scripta Materialia
A recent comment on a previously published paper addressed the invalid explanation of the off diagonal interdiflusion coefficients of the beta-Ni(Al,Cr) phase in the Ni-Cr-Al system according to the symmetric property of the thermodynamic matrix. In this paper, the experimental data presented by Hou et al. was reanalyzed and the interdiffusion coefficient matrix was estimated again. The results of the analysis have been discussed in terms of a brief reply to the comments of Liu and Liang. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
关键词:
Diffusion;Intermetallic compound;Ni-Cr-Al
张春路
,
丁国良
,
李灏
工程热物理学报
准确、快速、稳定地计算制冷剂热力性质是计算机辅助设计和工程计算的
要求。本文将隐式拟合方法与MartinHou方程相结合,提出制冷剂过热气体热力
性质的隐式拟合方法,该方法不仅具有形式统一、精度高、速度快、外推性和
稳定性好的优点,而且保证了过热区与两相区之间热力性质的连续性
关键词:
制冷剂
,
过热气体
,
热力性质
,
拟合
曾东
,
燕瑛
,
王立朋
,
刘兵山
复合材料学报
doi:10.3321/j.issn:1000-3851.2005.06.022
通过三维动力学有限元法,采用空间杆单元来描述缝线,结合试验系统地研究了缝合复合材料的低速冲击损伤问题.采用修正的赫兹接触定律计算冲击接触力,NewMark直接积分法求解运动方程,求解冲击过程中的应力应变;在Chang和Hou等的分层扩展准则基础上,提出一修正的分层扩展准则并考虑纤维断裂,建立了分析低速冲击损伤面积的方法;对相同铺层的缝合与未缝合复合材料层板进行了低速冲击试验.分析结果与实验结果具有良好的一致性,证明本文中提出的修正的分层扩展准则是正确的.计算及试验结果均表明,在相同冲击能量作用下,缝合使冲击损伤面积明显减小.
关键词:
缝合复合材料
,
低速冲击
,
三维有限元
,
损伤面积
Journal of Physics and Chemistry of Solids
The layered ternary ceramics Ti3SiC2 and Ti3AlC2 are isostructural and can form Ti3Si1-xAlxC2 solid solutions combining the advanced properties of both compounds [H.B. Zhang, Y.C. Zhou, Y.W. Bao, M.S. Li, Improving the oxidation resistance of Ti3SiC2 by forming a Ti3Si0.90Al0.1C2 solid solution, Acta Mater. 52 (2004) 3631-3637; E.D. Wu, J.Y. Wang, H.B. Zhang, Y.C. Zhou, K. Sun, Y.J. Xue, Neutron diffraction studies of Ti3Si0.9Al0.1C2 compound, Mater. Lett. 59 (2005) 2715-2719; J.Y. Wang, Y.C. Zhou, First-principles study of equilibrium properties and electronic structure of Ti3Si0.75Al0.25C2 solid solution, J. Phys.: Condens. Matter 15 (2003) 5959-5968; Y.C. Zhou, J.X. Chen, J.Y. Wang, Strengthening of Ti3AlC2 by incorporation of Si to form Ti3Al1-xSixC2 solid solutions, Acta. Mater. 54 (2006) 1317-1322]. In the present work, the solid solutions of Ti3Si1-xAlxC2 (x = 0, 0.25, 0.33, 0.5, 0.67, 0.75, 1) are investigated by first-principle calculations based on pseudo-potential plan-wave method within the density functional theory framework. The results show that as Al content increases in the solid solution, all the bonds have weakened to certain extents, which lead to an unstable structure both energetically and geometrically. The calculated results are compared and discussed with the reported data for the Ti3Si1-xAlxC2 solid solutions. (c) 2007 Elsevier Ltd. All rights reserved.
关键词:
ceramics;ab initio calculations;electronic structure;electrical;conductivity;oxidation behavior;mechanical-properties;ti3sic2;temperature;ti3alc2;air;si