欢迎登录材料期刊网

材料期刊网

高级检索

  • 论文(30)
  • 图书()
  • 专利()
  • 新闻()

1998 COMPREHENSIVE TABLE OF CONTENTS

中国腐蚀与防护学报

N。1Atmospheric Corrosivlty for Steels………………………………………………… .LIANG Caideng HO[I i。-tat(6)Caustic Stress Corrosion Cr。king of Alloy 800 Part 2.The Effect of Thiosul执e……………………………………… KONG De-sheng YANG Wu ZHAO Guo-zheng HUANG De.ltL。ZHANG Yu。。he CHEN She。g-bac(13)SERS slid E16CttOCh6iniC81 Stlldy Of Illhibit1Oli M6ch&tllsth Of ThlollY68 Oil ITOll ID H....

关键词:

硝酸羟胺的热稳定性评估及热分解机理研究

刘建国 , 安振涛 , 张倩 , 杜仕国 , 姚凯 , 王金

材料导报 doi:10.11896/j.issn.1005-023X.2017.04.030

为评估氧化剂硝酸羟胺的热稳定性,使用标准液体铝皿于3 K/min、4 K/min、5 K/min加热速率下进行热分析.借助非等温DSC曲线的参数值,应用Kissinger法和Ozawa法求得热分解反应的表观活化能和指前因子,根据Zhang-Hu-Xie-Li公式、Hu-Yang-Liang-Xie公式、Hu-Zhao-Gao公式以及Zhao-Hu-Gao公式,计算硝酸羟胺的自加速分解温度和热爆炸临界温度,并对热分解机理函数进行了研究.设计了7条热分解反应路径,采用密度泛函理论B3LYP/6-311++G(d,p)方法对硝酸羟胺的热分解进行了动力学和热力学计算.计算结果表明,硝酸羟胺热分解的自加速分解温度TsADT=370.05 K,热爆炸临界温度Te0=388.68K,Tbp0=397.54 K,热分解最可几机理函数的微分形式为f(a) =17×(1-α)18/17.硝酸羟胺热分解各路径中,动力学优先支持路径Path 6、Path 5、Path 4和Path 1生成NO和NO2,其次是Path 2、Path 7和Path 3生成N2和N2O.温度在373 K以下时,Path 1'反应无法自发进行,硝酸羟胺无法进行自发的热分解.从热力学的角度来看,硝酸羟胺在370.05K以下储存是安全的.

关键词: 硝酸羟胺 , 热分析 , 热稳定性 , 热分解机理 , 密度泛函理论

Ion sputter erosion in metallic glass-A response to "Comment on: Homogeneity of Zr(64.13)Cu(15.75)Ni(10.12)Al(10) bulk metallic glass" by L-Y. Chen, Y-W. Zeng, Q-P. Cao, B-J. Park, Y-M. Chen, K. Hono, U. Vainio, Z-L. Zhang, U. Kaiser, X-D. Wang, and J-Z Jiang J. Mater. Res. 24, 3116 (2009)

Journal of Materials Research

The morphology of the dark and bright regions observed by transmission electron microscopy for the Zr(64.13)Cu(15.75)Ni(10.12)Al(10) bulk metallic glass strongly depends on the ion beam parameters used for ion milling. This indicates that the ion beam could introduce surface fluctuation to metallic glasses during ion milling.

关键词: room-temperature

Modification of Analytical Expression of Electron Dynamical Diffraction

Canying CAI , Qibin YANG , Hongrong LIU

材料科学技术(英文)

Assuming that the wave function , the Schrodinger equation can be written as . Neglecting the last two terms, an analytical expression of electron dynamical diffraction was derived by Qibin YANG et al. In this paper, the analytical expression is modified by further considering the second-order differential term . When the accelerating voltage is not very high, or the sample is not very thin, the reciprocal vector ɡ is large, the modification of the second-order differential is necessary; otherwise it can be neglected.

关键词: Electron dynamical diffraction , null

  • 首页
  • 上一页
  • 1
  • 2
  • 3
  • 下一页
  • 末页
  • 共3页
  • 跳转 Go

出版年份

刊物分类

相关作者

相关热词